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PREFACE

The original inspiration for this book came from Daniel Jones, Assistant
Director of Interpretive Programs for the NEH, who urged me some years
back to submit a proposal within the compass of a new guided-study pro-
gram in the history of science. His suggestion could not have been more
timely. I was then working on an English translation of Prolemy’s Optics, and
the opportunity to use it as a springboard for a general text-based study of
Greek mathematical optics was irresistible. 1 proposed, the NEH disposed,
and this is the result.

Why this particular study at this particular time? I can think of at least
two reasons. The first is historiographical. Virtually all survey-accounts of
ancient science leave the mistaken impression that ancient ray-theory shared
the same basic aims and methods as its modern counterpart and, therefore,
that the two are genetically linked. The source of confusion lies in the fact
that, for the sake of simplicity and brevity, textbook authors emphasize those

aspects of Greek ray-analysis (as applied specifically to reflection and refrac-

tion) that seem most innovative and foward-looking and that are thus most
resonant to the modern reader. Viewed selectively in this way, of course,
Greek ray-theory looks very much like its modern counterpart. In reality,
however, the two have little more in common than neolithic trepanation and
modern neurosurgery. Whatever their crude similarities at a procedural level,
ancient and modern ray-theory are worlds apart in conceptual and method-
ological foundations, and the same holds for their fundamental aims.

Take as an illustration Prolemy’s attempt to find the governing principle
of refraction. The most striking thing about that attempt s its sophisticated
observational basis. In a series of carefully-contrived experiments measuring
refraction from air to water, air to glass, and water to glass, Ptolemy plotted »
against 7 at ten-degree intervals from 7 = 0° to i = 80°.! The resulting r-values
are, on the whole, so near to what is predicted by the modern sine-law that
we are left to marvel at the closeness of the call. What could be more natural
than to conclude that Prolemy failed to discover the appropriate (and exact)
sine-relations not for conceptual or methodological reasons, but because his
experimental results were inadequately precise? Much the same can be said of
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his treatment of reflection: although Prolemy was clearly on the right track,
he went astray at critical points, particularly in his analysis of image-forma-
tion in concave mirrors. What else but imprecision or inadvertence could
have led to such errors?

From a retrospective standpoint, this evaluation of Ptolemy’s optical analysis
and its shortcomings makes sense. After all, Ptolemy did fail to find the sine-
law of refraction, and his treatment of reflection is unqtlesti(mubly deficient
by modern standards. But such an evaluation misses the point, for it assumes
that Greek ray-theory was designed to accomplish the same ends as its mod-
ern counterpart. This assumption is as false as the interpretive structure builc
upon It is uni]iumin;lring. I’mlcmy in fact “failed” to find the sine-law of
refraction because he was looking for something else, and the “erroneous”
conclusions he reached in his analysis of reflection were not erroneous ar all:
viewed within their proper context, they were perfectly consistent with both
“fact” and theoretical expectation. The problem, at bottom, is that ancient
ray-theory was intended to explain sight, not the radiation of light. If, then,
Ptolemy and his fellow visual ray theorists can be said to have strayed from
“the right track’—i.e., the one lc;lding directly to modern ray t]lc()ry—it 1S
because they were embarked on an entirely different train with an entirely
different destination in mind.

The second justification for this study involves the state of current schol-
arship. Over the past couple of decades the history of ancient optics has un-

dergone a fundamental reappraisal in regard to both the basic sources and

their interpretive context. As part of this reappraisal, several key texts have

finally been rendered into English. The time is thus ripe for an introductory
study that incorporates both the new wealth of translated sources and the
interpretive insights that have emerged in recent years. Accordingly, what I
offer here is not an anthology in the manner of Cohen and Drabkin’s 4 Source
Book in Greek Science’ or the more recent L'Ottica dalle origini all'inizio del
700 by Fabio Bevilacqua and Maria Grazia lanniello.? Such anthologies have
their uses, but their intent is to illustrate a few select points, not to examine
the subject in depth. My purpose is somewhat broader. Using actual sources
as a foundation, I hope to show how ancient mathematical optics developed
in response not only to certain theoretical imperatives but also to cmpirical
evidence. The study that follows is therefore thesis-driven, to be sure, yet |
have borne in mind throughout that, rather than force assent to my way of
thinking, my primary oblig;lricm is to open a path for readers to reach their
own understanding.

In assuming the role of guide rather than of scholarly apologist, I have
tried to make this study accessible to the widest possible audience. For one

thing, the technical demands are relatively light. All that is needed is a basic
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gl'oullding in pl;mc (Euclidean) geometry. For another [‘|1ing_, although the
ostensible focus of the study is on r;]}uzumlysis, considerable attention is paid
throughout to issues of perceptual psychology, physiology, and even method-
ology. So there is plenty of grist for the mill of anyone not inclined to work

punctiliously through the mathematical demonstrations. Practically speak-

ing, then, this study is geared to readers with a fairly wide range of skills and

interests, from the Wi”ing undcrgr;uhmtc to the academic }‘JI‘U!-L’SS'IUII‘.]I. from
the philosophically- to the technically-minded: to anyone, in short, seeking a
source-based introduction to optics and visual theory as it developed in antig-
uity.

Now to acknowledgments. Let me start by expressing my deep gratitude
to the National Endowment for the Humanities for their generous support in
the completion of this project. Thanks are also due to my home institution,
the University of Missouri, for unstinting supplcmcntary support. For inspi-
ration and insight, given either directly or indirectly, the following scholars
deserve special mention: Albert Lejeune, whose pioneering studies of Euclid-
ean-Ptolemaic optics helped me see things I would otherwise surely have missed;
David C. Lindberg, who guided me early on as I groped my way toward an
appreciation of ancient and medieval optics; and Gérard Simon, whose clarity
of thought about Euclidean-Ptolemaic optics aided me immeasurably in fo-
cusing my own. For various editorial criticisms and suggestions, finally, 1
want to thank Lois L. Huneycutt, Alan Bowen, and Jennifer Erickson, the
first for her incisive critque of my ideas and their framing and the latter two
for their punctilio in weeding out errors and infelicities of expression. What-
ever faults remain are due either to my inattention to detail or my refusal to

yield to better judgment.
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NOTES

I'The symbol i represents the angle of incidence as measured according to the

perpendicular dropped ro the refracting surface at the point of refraction; r is the

angle of refraction as measured according to that same perpendicular. For a diagram
illustrating these two angular relationships, see figure 4.2 on p. 130 below.
2Cambridge: Harvard University Press, 1948.

3Turin: Loescher Editore, 1982.




INTRODUCTION

One of the most remarkable achievements of Greek science was the invention
of the ray-concept and the attendant development of mathematical optics on
its basis. Precisely when this simple yet ingenious analytic expedient was first
applied to the study of sight and light is a matter of speculation, but we can
trace its origins to the mid-fourth century B.C. at latest, and probably even
earlier. In the Physics, for example, Aristotle included optics among “the more
natural of the branches of mathematics,” adding by way of elucidation that,
“while geometry investigates natural lines but not gua natural, optics investi-
gates mathematical lines, but gua natural, not gua mathemarical.”! Aristotle’s
grasp of mathematical optics was not just theoretical; in the third book of the
Meteorology he actually attempted to explain the formation of haloes and rain-
bows on the basis of ray-analysis, ultimately imputing the phenomenon to
reflection.?

As might be expected, ray-theory underwent considerable development
from the time of Aristotle to the appearance of Ptolemy’s Optics in the second
half of the second century A.D., when ancient mathematical optics reached
its culmination in terms of both analytic scope and theoretical specification.
[t is our purpose in this study to trace the course of that development, using as
a textual core four sources specifically devoted to mathematical optics. Com-
posed around 300 B.C., Euclid’s Optics represents the earliest of these sources.
In it the basic theoretical framework for all subsequent development is laid.
Next comes the Pseudo-Euclidean Cazoptrics, which forms a natural compan-

ion-piece to the Optics but may reflect a somewhat later stage of development.

Dating from around the mid-first century A.D., our third source, Hero of
Alexandria’s Catoptrics, offers important insights into the evolution of post-
Euclidean optics. And finally, rounding out our list is Prolemy’s Optics, which
was written sometime between 160 and 170 A.D as a comprehensive synthe-
sis in the mold of its astronomical counterpart, the Almagest.3

In addition to this somewhat meager core of technical sources, we will
also draw upon certain supplementary works. Among these are: Plato’s Timaeus
(mid-fourth century B.C.), Aristotle’s Meteorology, On the Soul, and Sense and
Sensibilia (mid-fourth century B.C.), the Pseudo-Aristotelian Problems (fourth
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century B.C.?), Theophrastus’ On the Senses (late fourth century B.C.), Diocles’
On Burning Mirrors (early second century B.C.), Lucretius’ On the Nature of
Things (mid-first century B.C.), and Galen’s On the Usefulness of the Parts of
the Body and On the Opinions of Plato and Hippocrates (later second century
A.D.).4 The reason for including these supplementary sources is to broaden
the context of our study, particularly in regard to issues of visual perception
and its physical, physiological, and psychological basis.

At first glance, this emphasis on visual perception might seem misplaced
in a study of mathematical optics. But it is crucial to realize that, unlike its
modern counterpart, ancient mathematical optics was concerned not with the
physics of light but with the process of sight. Indeed, the very term “optics”
(Greek: optica, from ops = “eye”) indicates that, for ancient optical theorists,
the cardinal reference-point was the eye. The ray was therefore conceived of as

a line of sight rather than a trajectory for light, its fundamental purpose being

to account for the visual perception of spatial reality. On that basis, ancient
mathematical optics developed according to a tripartite analytic structure.
Optics proper, on the one hand, was concerned with the appearances result-
ing from an unimpeded line of sight between eye and object. Catoptrics, on
the other, was concerned with the appearances resulting from a fully broken
line of sight. Its primary aim was therefore to explain mirror-images and their
deviation from the objective reality they represent. Dioptrics, finally, dealt
with the appearances resulting from a partially broken line of sight. In this
case, too, the primary aim was to explain images and their deviation from
objective reality.

The study that follows reflects this basic analytic structure. It consists of
five sections, the first of which focuses upon the development of visual theory
from roughly the time of Aristotle to that of Ptolemy. We will start this sec-
tion by examining various physical explanations of sight proposed in anti-
quity, paying particular attention to theories of light and color. We will then
turn to the physiology of vision, taking a brief look at the development of
ocular anatomy in relation to theories of sensation and the nervous system.
That done, we will close with a look at the psychology of visual perception as
understood, primarily, by Aristotle and Prolemy.

Taking the foregoing analysis as context, we will focus in section two upon
ray-theory itself, our primary goal being to understand precisely what the ray
was thought to represent in Greek optics and how it was used to account for
the visual perception of space. We will then turn to catoptrics in section three,
examining not only theoretical but also empirical and mathematical approaches
to reflection from plane, convex, and concave mirrors. Section four will be
devoted to dioptrics, our focus in this case being upon Ptolemy’s analysis of

refraction through various media and his subsequent attempt to derive a gen-
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eral principle relating angles of incidence and refraction. The fifth and final
section will be devoted to early analyses of the rainbow and burning mirrors,
two topics that seem not to have been integral to the mainstream study of
optics. To put this text-based study into proper historical context, finally, we
will conclude with a cursory look at the fate of the Euclidean-Ptolemaic opti-
cal tradition during late antiquity and the Middle Ages. Suffice it to say, our
purpose in all this is to give a mere sketch, not a detailed picture.

As far as format is concerned, the study will consist of excerpts drawn
from the sources mentioned above. Those excerpts will be tied together by
short introductory or explanatory passages intended to provide a coherent
framework for them. The excerpts themselves will be numbered consecu-
tively within their respective sections, and each excerpt will be given a full

source-reference. Whenever necessary, intra-textual annotation will be pro-

vided in order to clarify points. In most cases, I have relied on published

translations for the source-texts, but I have supplied my own translations in
the case of Euclid’s Optics, the Pseudo-Euclidean Catoptrics, and Hero’s
Catoptrics. Since this study is introductory in nature, I have, as far as possible,
ignored scholarly disputes about the precise meaning and intention of various
textual passages that are open to debate. For the sake of simplicity and clarity,
therefore, | have at times taken interpretive stands that are more definite (some
might even say more reckless) than the cited texts may actually warrant, par-
ticularly in the first section dealing with theories of visual perception. Part of
the problem, of course, has to do with the texts themselves. After all, no text
simply speaks for itself, and the farther removed in time and culture a text is,
the more garbled its message is likely to seem. But a considerable part of the
interpretive problem has to do with the type and quality of textual evidence
available, a point that merits some amplification.

The Problem of Sources: There is no shortage of modern literature devoted
either wholly or in part to the development of Greek optics. Nor is there any
shortage within this literature of confident assertions about the course of that
development, its dramatis personae, its theoretical underpinnings, or its ulte-
rior significance. When we move from these secondary studies to the actual
sources upon which they are based, however, we cannot help but be struck by
the extreme tenuousness of that basis. Rarely, in fact, has so much been made
by so many of so little. A brief discussion of the textual basis for our current
understanding of Greek optics is therefore in order.

Drawing upon an earlier compilation by Thrasyllus (fl. early first century
A.D.), Diogenes Laertius (fl. early third century A.D.?) lists some seventy
treatises thought to have been written by Socrates’ notorious contemporary,
Democritus (460-357 B.C.). If we are to judge by the titles, no fewer than
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four of the listed works were devoted entirely or in significant part to optical
matters. Yet not one of the four has survived. In fact, the entire oeuvre of
Democritus is now lost, and there is no telling how much of it survived even
up to the time of Diogenes Laertius. Likewise, among the almost 230 works
attributed by the same author to Aristotle’s disciple, Theophrastus (fl. c. 320
B.C.), at least four were concerned with optical subjects. Of these four, the

only survivor is On the Senses, in which the treatment of vision forms only

part, albeit the major part, of a more general study of sensation. Not an
exposition of Theophrastus” own theory of sensation, however, this treatise is
actually a critical commentary on the theories of certain of his predecessors,
Democritus included.

These two cases illustrate most, if not all, of the basic problems facing the
historian of optics from Presocratic times up to, and well beyond, the late
Hellenistic period. The first and most obvious of these problems is the dearth
of primary texts available to us today. We know, for instance, that, as part and
parcel of a general interest in natural philosophy, the study of optics began in
earnest long before Aristotle. We also know that this initial phase of study
spawned numerous treatises on light, color, and vision. Both Theophrastus
and Diogenes Laertius, among others, attest to that fact. Against all odds,
however, every one of these seminal works has sunk into oblivion. Apart from
scattered passages in Plato’s dialogues, the earliest extant optical texts are to be
found in the Aristotelian corpus. Almost all direct traces of the development
of oprtical thought before Aristotle have thus been effectively erased.

Even for the period between Aristotle and Ptolemy we have almost noth-
ing in the way of primary sources, and the little we do have is chronologically
skewed, most of it—with the signal exception of Theophrastus’ On the Senses
and Euclid’s Optics—dating from after 100 B.C. Hence, just as for the period
up to roughly 350 B.C., so for the period from roughly 300 B.C. to 100 B.C.,
our understanding of the development of optical thought is hampered by a
lack of direct textual evidence.

Failing primary sources, then, we are forced to rely heavily upon second-
ary or indirect sources. Scarcity is not the problem here. On the contrary, we
have a rather wide variety of such sources, ranging from critical commentaries
(e.g., Theophrastus’ On the Senses) to doxographical accounts (e.g., Diogenes
Laertius’ Lives). Even primary sources can double as secondary ones. Aristo-
tle, for instance, supplies a good deal of information about previous theories
of vision in order to lay the background for his own discussion. Galen, oo,
tells us a great deal about Stoic visual theory in the course of outlining and
defending his own. Like the indirect sources themselves, moreover, the infor-
mation they convey ranges in kind from direct quotations (“X said Y’”),

through paraphrases (“X said that Y”), to oblique citations (“X is said to have
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claimed that Y”).

Obviously, what is at issue here is reliability. How much credence can we
actually give to these sources and the information they impart? The answer is
contingent upon a number of factors, among which time looms especially
large. For example, both Aristotle and Diogenes Laertius have much to tell us
about Democritus, yet Aristotle was almost contemporaneous with Democritus,
while Diogenes Laertius lived at least seven centuries after him. Moreover,
Diogenes was prone to give oblique citations, which indicates that he fre-
quently drew his information at second hand without much critical concern.
Ought we then to give more credence to Aristotle? Not necessarily, because
Aristotle was notoriously selective in his use and interpretation of sources,
sometimes willfully distorting them in order to reinforce the superiority of his
own positions.

A further problem, which is particularly germane in the case of the four
primary sources upon which this present study is based, is that of authenticity.
As is so often the case with ancient texts, neither the authenticity nor prov-
enance of those sources can be established with absolute certainty. There are
several reasons. First, none of the extant manuscripts containing them dates
from before the Middle Ages, so the texts as we know them are products of
successive redactions that may well have altered the original beyond all recog-
nition. Second, only two of the texts have reached us in Greek. The remain-
ing two are available only in Latin translation. Thus, whatever textual devia-
tions might naturally accrue through successive redactions can only have been
compounded by such translation. Finally, there is the problem of false attri-
bution. Whether purposely or not, many ancient works have been misascribed
in the course of textual transmission. At least one of our key texts, Hero’s
Catoptrics, was long attributed to the wrong author (Ptolemy), and the same
could well hold for others.

While such problems may prevent us from achieving absolute certainty,
they need not keep us from establishing the authenticity of our sources with at
least relative assurance. For instance, there is a considerable body of testi-
mony from antiquity and the early Middle Ages confirming that optical works
by Euclid, Hero, and Ptolemy were in circulation during that period. In the
case of Hero's Cazoptrics, in fact, it was just such testimony that permitted the
modern editor to determine its true authorship in spite of its longstanding
misattribution to Prolemy. Moreover, a comparison of the works among them-

selves may provide at least a rough sense of chronological order. There can be
no doubt, for example, that Prolemy’s Optics represents a more advanced stage
(at least conceprually) in the development of ray-theory than Euclid’s Optics
and Catoptrics, or for that matter than Hero’s Catoptrics, which in turn repre-

sents a clear advance over its Euclidean counterpart. Granted, in actual chro-
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nological rather than in ideal evolutionary terms, apparent progenitor may

well turn out to be offspring, but in the case of our four treatises all evidence
points to a parallel between evolutionary and chronological succession. Thus,
however problematic the precise chronology and attribution of our source-
texts may be, we have at least some assurance that they mark successive points
along a line of theoretical development. Following is a list, with brief descrip-
tions, of the basic sources used in this study.

1. The Four Primary Texts

Euclid’s Optics: Best-known for the Elements, his magisterial compendium of
plane and solid geometry, Euclid apparently taught at Alexandria in the late
fourth and early third centuries B.C., when that city began to rival, if not
surpass, Athens as an intellectual and cultural center within the Hellenistic
world. One of his relatively minor works, the Optics, has come down to us in
Greek, the earliest manuscript dating from the tenth century A.D. In fact, as
the great Danish philologist J. L. Heiberg discovered, there are two distinct
versions of the Optics. One of them is thought to represent a recension by
Theon of Alexandria (later fourth century A.D.), whereas, according to
Heiberg’s analysis, the other is genuinely Euclidean. Critically edited with
facing Latin translations, both versions were published by Heiberg in 1895.
The two have since been translated into French by Paul Ver Eecke. The full
text of the supposedly genuine Optics has been translated by H. E. Burton,
and excerpts have been translated and published in M.R. Cohen and I. E.
Drabkin’s Source Book in Greek Science. Although Heiberg’s categorization of
the two versions of Euclid’s Optics has gone unchallenged up to now, one
scholar has recently questioned it, suggesting instead that the putatively genu-
ine version may actually be the later of the two. Whatever the case, however,
there is no dispute that the propositional content of both versions is funda-
mentally Euclidean.?

Hero of Alexandria’s Catoptrics: There has been considerable disagreement
over the years about Hero ofAlcxandria’sﬂorué[, but the current consensus is
that it belongs somewhere within the middle decades of the first century A.D.
Like the Mechanics and Pneumatics, Hero’s Catoptrics reveals a strong practical
bent, much of the treatise being devoted to the arrangement of mirrors for
particular visual effects. Unfortunately, the version that we currently possess
exists only in a Latin translation produced by William of Moerbeke in 1269;
the Greek original has yet to be found. Worse yet, this particular version
appears to be an abridgment of the original, consisting of snippets strung
together with little or no regard to logical sequence. Falsely ascribed to Ptolemy
since the Middle Ages, the Catoptrics has been properly credited to Hero since
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the very turn of this century, when it was critically edited and published with
a facing German translation by Wilhelm Schmidt. English excerpts can also
be found in Cohen and Drabkin’s Sowurce Book.6

The “Pseudo-Euclidean” Catoptrics: Although this work is consistently as-
cribed to Euclid in the extant manuscripts, its modern editor, J. L. Heiberg,
concluded for stylistic reasons that it could not be genuinely Euclidean, claim-
ing, instead, that it was a late compilation by Theon of Alexandria containing
both Euclidean and post-Euclidean elements. On that understanding, he pub-
lished the critical text along with facing Latin translation in tandem with the
two versions of Euclid’s Optics. A French translation was subsequently pub-
lished by Ver Eecke along with his translation of the Optics. Following Heiberg’s
suggestion, the respected Belgian scholar, Albert Lejeune, claimed to have dis-
cerned three basic chronological strata in the work, the earliest dating to the
period between Euclid and Archimedes, the next to around the time of Hero,
and the last to the time of Theon. According to Lejeune’s account, more than
70% of the theorems in the work belong to the two earlier strata; even more to
the point, nearly 80% of that total belongs to the earliest stratum. Recently,
however, a persuasive argument has been made against both Heiberg and
Lejeune in defense of the work’s authenticity.” I will therefore treat this work
as genuinely Euclidean throughout the remainder of this study.

Ptolemy’s Optics: Born around 100 A.D., Prolemy passed his working life in
or near Alexandria. Before his death in the late 170’ he had written a wide

variety of works that included four major compendia: the Syntaxis Mathematike

(or Almagest, as it came to be known among the Arabs), the Geography, the
Tetrabiblos, and the Optics, which was probably written in the later years of his
life. Translated into Arabic by the early tenth century at latest, this work has
left no trace in either Greek or Arabic. All that survives is a badly mangled
twelfth-century Latin version translated from the Arabic by a Byzantine func-
tionary (the “Emir” Eugene) in Norman Sicily. In addition to various minor
lacunae and textual inconsistencies, this version lacks the entire first book and
ends abruptly in the middle of the fifth. Despite some controversy over the
worl’s authenticity, there is no compelling reason to doubt that it is genuinely
Prolemaic. A critical Latin edition was produced by Albert Lejeune in 1956,
and his French translation of the text has since been published posthumously.
The excerpts used in this study have been drawn from my English translation
of 1996.8

2 Sztppt'emmtzzry Sources

Aristotle’s Meteorology, On the Soul, and Sense and Sensibilia:® A student of
Plato, Aristotle (384-322 B.C.) founded his own school, the Lyceum, after
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Plato’s death. His account of the rainbow in the Meteorology provided the
standard explanation until the later Middle Ages. On the Soul represents
Aristotle’s most extensive treatment of the psychological and epistemological
entailments of sense-perception. Part of the so-called Parva naturalia, Aristotle’s
Sense and Sensibilia offers a more fundamental examination of sense-percep-
tion and its physical ramifications.

Diocles’ On Burning Mirrors:' We know virtually nothing about Diocles
beyond his probable floruit of 190-180 B.C. Surviving only in Arabic transla-
tion, his On Burning Mirrors contains the earliest known treatment of the
focusing properties of parabolic sections.

Galen’s On the Usefulness of the Parts of the Body and On the Opinions of
Hippocrates and Plato:!

medical theoretician, Ptolemy’s younger contemporary, Galen (c. 130-c. 200

Remarkable for his skills as both anatomist and

A.D.), was deeply indebted to the Alexandrian medical tradition. Despite his
vehement attacks against the Stoics, he was heavily influenced by them, par-
ticularly in his physical leanings. A compendious description of the various
organs of the body, Galen’s On the Usefulness of the Parts contains a long dis-
cussion of the eye and its functioning in the tenth book. In On the Opinions
of Hippocrates and Plato Galen attacks various doctrines of the Stoic philoso-

pher, Chrysippus, and in the process gives us valuable insight into those doc-

trines and their meaning. The work therefore represents a crucial source for
our understanding of the Stoic theory of vision--albeit refracted through a
distinctly Galenic prism.

Lucretius On the Nature of Things:'> By the author’s own testimony, this
Epicurean manifesto was intended to free its readers from the trammels of
religious superstition and the fears inspired by it. In it, Lucretius (c. 99-c. 55
B.C.) attempts to explain the full range of natural phenomena on the basis of
atoms and their more-or-less free associations. Accordingly, his account of
vision in the fourth book of the treatise reduces the process to atomic actions
and reactions.

Plato’s Timaeus:'® Founder of the Academy at Athens, Plato (427-348/47
B.C.) spent much of his later life shuttling between Athens and Magna Graecia,
where he is supposed to have come under Pythagorean influence. Among the
very latest of his dialogues, the Timaeus certainly reveals traces of such influ-
ence. As part of the cosmogonic/cosmological account offered in that work,
Plato includes a relatively extensive discussion of sensation, part of which deals
with vision.

The Pseudo-Aristotelian On Colours and Problems:'* The first of these works
offers a fundamentally Peripatetic discussion of color and color-perception,
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discussing the basic formation of colors and the ambient circumstances that
can modify our perception of them. The Problems is an extensive compilation
that touches on a remarkable range of subjects, including visual theory. Built
around an early Peripatetic core, the work as a whole appears to be the result

Of: constant accretions over SCVL’I’:II centuries.

Theophrastus’ On the Senses:'> A close disciple of Aristotle and his successor
to the headship of the Lyceum in 322, Theophrastus (c. 372-c. 287 B.C.) was
evidently a prolific author, being credited with over 200 works. Unfortu-
nately, only a handful has survived, among which On the Senses represents an

extensive critique of various contemporary accounts of vision.
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ed., The Complete Works of Aristotle: The Revised Oxford Translation (Princeton:
Princeton University Press, 1984), vol. 1, Pl

31’14&){50)‘0[0@, [1I, 2-6; see section V, 1, pp. 149-153 below for Aristotle’s explana-
tion of the rainbow.
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17 above.
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ing to the Euclidean Optica and Catoptrica,” Physis 31 (1994): 1-45. Ver Eecke’s
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(Paris: Blanchard, 1959), pp. 1-98. For the English translation, see H. E. Burton,
“The Optics of Euclid,” Journal of the Optical Society of America, 35 (1945): 357-72.
For the English excerpts, see Cohen and Drabkin, Source Book, pp- 257-61.
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English excerpts, see Cohen and Drabkin, Source Book, pp. 261-G8.
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Press, 1992), pp. 13-37, and Gérard Simon, “Aux origines de la théorie des miroirs:
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259-72.
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SECTION 1

ANCIENT THEORIES OF VISUAL PERCEPTION

Between the roughly six centuries separating the Presocratics from Prolemy, a
fairly wide range of visual theories was proposed and debated. Perhaps the
easiest way to understand these theories is by topical foci. Accordingly, the
following discussion will be divided into three sub-sections. In the first sub-
section we will look at how various theorists explained the visual process in
terms of the physical interaction between eye and visible object. In the next
sub-section we will focus on the physiological explanation of sight, examining
how the anatomical and physiological structure of the eye was understood to
contribute to the visual process. In the third sub-section, finally, we will look
at how certain thinkers explained the psychology of perception according to
levels of visual and mental processing.

1. The Physics of Vision

Whatever their differences in detail, ancient Greek theories of vision all
found common ground in the assumption that sight cannot occur without
some physical mediation between the eye and visible objects. That belief, in
turn, was rooted in a critical supposition about physical causation and sus-
tained by an equally critical fact. The critical supposition is that material
bodies, such as eyes and visible objects, can only affect one another through
physical contact. In short, action at a distance is impossible. The critical fact
is that, in order for vision to occur at all, there must be some spatial separation
between eye and object. Direct contact simply will not do. Having, therefore,
precluded both action at a distance and direct physical contact, Greek visual
theorists were forced to adduce some tertium guid that would physically link

eye and object while, at the same time, serving as a perceptual bridge between

them.

Agreement over the need for such a mediating link still left ample room
for debate over how this link was established. From what we know, virtually
all of the theoretical responses that emerged in the course of that debate fell

between two logical extremes. At one end lay intromissionism, which ex-
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plains vision in terms of a physical influx passing from the visible object to the

eye. It was upon a fundamentally intromissionist basis that the ancient atomists,

as well as Aristotle, constructed their accounts of vision. At the other end lay

extramissionism, according to which vision is explained in terms of an emis-
sion outward from the eye to visible objects. It was, of course, upon a funda-
mentally extramissionist basis that the visual-ray theorists from Euclid to
Prolemy constructed their accounts of vision. Finally, between the
intromissionist and extramissionist extremes lay various intermediate theories
prcdicgncd on the need for both influx from external sources and efflux from
the eye. Among those who took this intermediate position, Plato and the
Stoics figure most prominently. Let us briefly examine the three basic alterna-

tives in turn, starting with intromissionism.

The Intromissionist Alternative: The atomist theory of vision was rooted in
the assumption that physical objects continually emit atom-thick replicas of
themselves. This assumption is clear in the reported claim by Epicurus (fl. c.
300 B.C.) that “particles are continually streaming off from the surface of
bodies . . . . And those given off for a long time retain the position and ar-
rangement which their particles had when they formed part of the solid bod-
ies.”! Formal representations of their generating objects, these replicas (eidola,
in Greek) serve as images for the eye (and thence the mind) into which they
are transmitted. Thus, as Lucretius (fl. c. 80 B.C.) puts it in De rerum natura,

4.54 and 4.239 (pp. 281 and 295-97):

[1.1] Since amongst visible things many throw off bodies, sometimes loosely
diffused abroad, as wood throws off smoke and fire heat, sometimes more
close-knit and condensed, as often when cicadas drop their neat coats in
summer, and when calves at birth throw off the caul from their outermost
surfaces, . . . a thin image must also be thrown off from things, from the
outermost surface of things, . . . which can be cast off in the same arrange-
ment they were in before, preserving the shape of the object, and far more
quickly . ... Now the images of things I speak of are being carried about and
thrown off scattered abroad in all directions; but because it is only with our
eyes we can perceive them, therefore it happens that where we turn our

sight, there all things strike upon it with shape and colour.

Since vision depends upon such material representations, or simulacra, Lucretius
concludes in De rerum natura, 4.230-238 (p. 295), that sight operates in much
the same way as touch:

[1.2] Since a shape handled in the dark is recognized to be the same which
is seen in the clear light by day, it must be that touch and sight are moved by
a like cause. Now, therefore, if we take hold of somt‘thing square and it
excites our feeling in the dark, in the light what square thing can fall upon
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our vision, if not an image of it? Therefore there is seen to be in images a

cause of vision, and without these nothing can be seen.

While both Epicurus and Lucretius seem to think that the material replicas of
visible objects are the sole mediating entities in visual perception, their prede-
cessor, Democritus (fl. c. 430 B.C.), offers a somewhat different account.
Theophrastus describes that account in On the Senses, 50, pp. 108-111:

[1.3] Vision [Democritus] explains by the reflection (emphasis) [in the eye]
of which he gives a unique account. For the reflection does not arise imme-
diately in the pupil. On the contrary, the air between the eye and the object
of sight is compressed by the object and the visual organ, and thus becomes
imprinted (zypousthai); since there is always an effluence of some kind aris-
ing from everything. Thereupon, this imprinted air, because it is solid and is
of a hue contrasting [with the pupill], is reflected in the eyes, which are
moist. [And] Democritus himself, in illustrating the character of the “im-
pression”, says that “it is as if one were to take a mould in wax”.

The Greek term emphasis, which is translated by “reflection” in this passage,

can also mean “presentation” or even “image,” in which case the sense of the
passage is that vision is caused by physical impressions created by the eidola
streaming from the object. Transmitted mechanically through the air, these
impressions strike the cornea, creating a formal representation in it of the
original object-source. In short, vision is ultimately due to a sort of stamping-
process, the result of which can be seen in the images reflected at the cornea’s
surface. Since vision requires the mediation of air, what is seen is not a mate-
rial replica of, but a mechanical effect created by, the visible object.

Like Democritus, Aristotle predicates his account of vision on mediation,
but unlike him, Aristotle denies that vision is in any way analogous to touch.
“Democritus and most of the natural philosophers who treat of sense-percep-
tion proceed quite irrationally,” Aristotle remarks in Sense and Sensibilia, 4,
442a29-b3 (p. 702), “for they represent all objects of sense as objects of touch.
Yet, if this is really so, it clearly follows that each of the other senses is a mode
of touch; but one can see at a glance that this is impossible.” Aristotle’s ac-
count of sight depends upon three preconditions. First, the visible object
must have color, which is the proper object of sight and, therefore, the only
thing that is per se visible. Second, eye and visible object must be physically
linked by a continuous transparent medium, such as air or water, for without
such media, color could not be transmitted from object to eye. Finally, be-
cause such media by their nature are only potentially transparent, they must be
rendered actually transparent by light. As Aristotle sums it up in Oz the Soul,

1, 7, 418a29-419a20 (pp. 666-67) :
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[1.4] Whatever is visible is colour and colour is what lies upon what is in its
own nature visible; . . . every colour has in it the power to set in movement
what is actually tranparent; [and] by ‘transparent’ I mean what is visible, and
yet not visible in itself, bur rather owing its visibility to the colour of some-
thing else; of this character are air, water, and many solid bodies. Neither air
nor water is transparent because it is air or water; they are transparent be-
cause cach of them has contained in it a certain substance [of which] light is
the activity—the activity of what is transparent so far forch as it has in it the
determinate power of becoming transparent; where this power is present,
there is also the potentiality of the contrary, viz darkness. Light is as it were
the proper colour of what is transparent and exists whenever the potentially
transparent is excited to actuality by the influence of fire . . . . The following
experiment makes the necessity of a medium clear. If what has colour is
placed in immediate contact with the eye, it cannot be seen. Colour sets in
movement not the sense organ but what is transparent, e.g. the air, and that,
extending continuously from the object to the organ, sets the latter in move-
ment . . .. [Therefore] seeing is due to an affection or change of what has the
perceptive faculty [i.e., the eye], and it cannot be affected by the seen colour
itself; it remains that it must be affected by what comes between. Hence it is
indispensable that there be something in between—if there were nothing, so
far from seeing with greater distinctness, we should see nothing at all.

Several fearures of this account are worth noting. For a start, if color is all that
is properly seen, then shape, size, relative configuration, etc.—in short, the

sum of visible properties for the atomists—must not be per sevisible. Light is

not per se visible either; its function is to actualize transparency, and it is only
through fulfillment of that function that its existence can be inferred. What
we vulgarly refer to as “light” is just the bright color of fiery or shining objects,
not—as the atomists would have it—a material emanation diffused outward
from certain kinds of bodies, such as the sun or stars. Finally, without an
intervening transparent medium through which the color-impression can be
transmitted, vision is impossible.

Color, however, is a inherent quality of physical objects, not a material
efflux, so the transmission of color through a transparent medium to the eye
entails an immediate (i.e., instantaneous) qualitative transformation of the
medium from tranparent to colored. Or, to put it in typically Aristotelian
terms, the transparent medium serves as the material cause, and color the
formal cause of vision. To explain this qualitative transformation in physical
terms Aristotle falls back upon the seal-and-wax analogy offered earlier by
Democritus (see passage 1.3 above). “Just as that which produces local move-
ment [i.e., spatio-temporal motion] causes a change extending to a certain

point,” Aristotle says in On the Soul, 111, 12, 434b29-435a10 (p. 691):




SECTION I: ANCIENT VISUAL THEORIES

[1.5] soitis also in the case of alteration, except that the agent produces it
without the patient’s changing its place. Thus, if an object is dipped into
wax, the movement goes on until submersion has taken place, and in stone
it goes no distance at all, while in water the disturbance goes far beyond the
object dipped: in air the disturbance is propagated farthest of all, the air
acting and being acted upon, so long as it maintains an unbroken WNItY. . ..
On a smooth surface [such as that of the aerial medium and the eye] the air
possesses unity; hence it is that it in turn sets the sight in motion, just as if
the impression on the wax were transmitted as far as the wax extends.

Clearly, Aristotle does not mean to imply that the visual impression is actually
stamped in the eye in a crassly mechanical way. The seal-and-wax analogy,
like that of the rippling effect in water when a stone is dropped into it, is just
that—an analogy, not a physical description. Another, perhaps better way of
understanding the physical alteration of the transparent medium and the eye
by color is by analogy to the freezing of water. Because freezing entails a
change of state rather than motion or mechanical impulse, it follows “that
water should be frozen simultaneously in every part” (Sense and Sensibilia, 6,
447a2-3 [p. 709]). Like freezing, therefore, the transmission of color occurs
everywhere instantaneously.

The Extramissionist Alternative: Whereas the intromissionists cast the eye in
an essentially passive role, as recipient of visual impressions, their extramissionist
opponents—led by the so-called Pythagoreans—took the opposite tack, em-
phasizing the activity of the eye in gathering those impressions for itself. For
instance, as quoted by Aristotle in Sense and Sensibilia, 2, 437b26-438a3 (p.
695), Empedocles (fl. c. 460 B.C.), who was not a Pythagorean, explains vi-
sion in the following terms:

[1.6] As when one who purposes going abroad prepares a lantern, a gleam
of fire blazing through the stormy night, adjusting thereto, to screen it from
all sorts of winds, transparent sides, which scatter the breath of the winds as
they blow, while, out through them leaping, the fire, i.c. all the more subtle
parts of this, shines along his threshold with incessant beams: so the primaeval
fire, fenced within the membranes and delicate tissues [of the eye] give birth
to a round-eyed daughter—tissues bored through with wonderful channels—
and these fended off the deep surrounding flood, while letting through the
fire, i.e. all its more subtle part.

Empedocles therefore likens the eye to a lantern, which, endowed with an

internal fire, sheds its own light on external objects to render them visible.
There is, of course, empirical evidence to support the idea that the eye has
innate light or fire. The early Pythagorean, Alcmaeon (fl. c. 490 B.C.), is said
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by Theophrastus to have observed that “the eye obviously has fire within, for
when one is struck [this fire] flashes out” (On the Senses, 26, p. 89). Many

ancient authorities found additional support for the theory of intraocular fire
in the apparently self-luminous nature of the eyes of nocturnal animals, such
as cats. And the fact that myopes squint in order to clarify their vision strongly
implics that sight is due to a material efflux from the eye, as the f.()llo\-ving
passage from the Pseudo-Aristotelian Problems, XXXI, 16, 959a3-8 (p.1510),

illustrates:

[1.7] Why do the short-sighted bring their eyelids close together when they
look at anything? Is it due to the weakness of their sight,? so that, just as a
man in looking at a distant object puts his hand up to his eyes, they close the
eyelids to look at objects near at hand? They do so in order that the vision
may proceed forth in a more concentrated form, since it passes through a
narrower opening, and that it may not be immediately dispersed by passing

out through a wide aperture.

The implication here is obvious: in order to see more clearly, the nearsighted
must focus the stream of ocular fire more narrowly than usual in order to
highlight distant objects.

Intermediate Theories: Actually, it is difficult to tie particular theorists (with
the possible exception of Euclid and Hero of Alexandria) to the unmitigated
extramissionist position implied in the preceding passages. Most
“extramissionists,” including Empedocles, seem to have taken a via media be-
tween extramissionist and intromissionist extremes. Take Plato’s mythopoeic
account of vision in Timaeus, 45b-c (pp. 152-53):

[1.8] Such fire as has the property, not of burning, but of yielding a gentle
light, [the gods] contrived should become the proper body of each day. For
the pure fire within us is akin to this, and they caused it to flow through the
eyes, making the whole fabric of the eye-ball, and especially the central part
(the pupil) smooth and close in texture, so as to let nothing pass that is of
coarser stuff, but only fire of this description to filter through pure by itself.
Accordingly, whenever there is daylight round about, the visual current4
issues forth, like to like, and coalesces with it and is formed into a single
homogeneous body in a direct line with the eyes, in whatever quarter the

stream issuing from within strikes upon any object it encounters outside.

Although the ocular fire-flux serves as the primary vehicle of sight in this
account, it must conspire with daylight—a similar form of fire—in order to
be effective. The resulting composite then washes up against external objects
to render them visible. (Note that, as for Aristotle, so for Plato, light serves as

a catalyst rather than an immediate cause of vision). Burt for Plato vision
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involves more than a conspiracy between visual flux and daylight. As is evi-
dent from the following passage in Timaeus, 67d-e (pp. 276-77), particulate

emissions from external bodies play a role as well:

[1.9] The particles that come from other bodies and enter the visual ray
when they encounter it are sometimes smaller, sometimes larger than those
of the visual ray itself; or they may be of the same size. Those of the same
size are imperceptible—transparent’, as we call them. The larger, which
contract the ray, and the smaller which dilate it, are analogous to what is
cold or hot to the flesh, and again to what is astringent or burning (‘pun-
gent’ as we call it) to the tongue. These are black and white, affections which
are due to these particles and are similar in character, though occurring in a
different field and for that reason p resenting themselves in a different guise.

¢

The names should be assigned accordingly: ‘white’ to what dilates the visual

ray, ‘black’ to what contracts it.

So color-perception is ultimately dependent on the tripartite physical interac-
tion of visual flux, light, and material emanations from visible objects.

In certain ways the Stoic theory of vision is reminiscent of Plato’s in that
it, too, supposes a fundamental interaction between ocular flux and external
light. In the case of the Stoics, however, the ocular flux (or pneuma) does not
travel to the object but, rather, to the interface between the ocular surface and

aerial medium enveloping it. When that medium is properly illuminated, the

impinging visual flux transforms it immediately into a percipient extension of

the eye. It is through this percipient extension that outlying objects are visu-
ally sensed, much as physical bodies are felt by means of a walking-stick. Galen
offers a variant of this theory in On the Opinions of Hippocrates and Plato, V11,
5 (p. 455).

[1.10] At the time when we look at something, the surrounding air be-
comes for us the kind of instrument that the nerve in the body is at all times.
It seems that the effect produced on the air around us by the emission of the
pneuma is of the same sort as the effect produced on it by the light of the
sun. For sunlight, touching the upper limit of the air, transmits its power to
the whole; and the vision that is carried through the optic nerves has a sub-
stance of the nature of pneuma, and when it strikes the surrounding air it
produces by its first impact an alteration that is transmitted to the furthest
distance—the surrounding air being, of course, a continuum, so that in a

moment of time the alteration spreads to the whole of it.?

In VII, 7 (p. 475) of the same work, though, Galen cautions against likening
the percipient extension of pneumatized air to a walking-stick because:
[1.11] This . . . kind of discernment [by a walking-stick] is of resistant

bodies, and it is besides more inferential than perceptive, whereas the per-
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ception of our eyes is not perceptive of a thing as close packed, or of its
hardness or softness, but of its color, size, and position, and none of these
can be discerned by a walking-stick.

As adapted by Galen, the Stoic theory thus depends upon a fundamental al-

teration of the continuous aerial medium by sunlight and a concomitant al-
teration by the visual pneuma that strikes it at the ocular surface. With these
two alterations complete, the medium provides both a physical and percep-
tual bridge through which the eye makes visual contact with external objects.
Like Aristotle, then, the Stoics and Galen emphasized the need for a medium
through which sensible alterations, not material or mechanical effects, could
occur instantaneously.

The Visual Ray Theory: At a superficial level it would appear that visual-ray
theorists took a radically extramissionist position in their account of vision.
For instance, Euclid seems satisfied to explain vision in straightforward terms
of physical contact between visual flux and external objects. Once blocked by
such objects, the flux feels them visually and thereby enables the viewer to
assess their spatial characteristics. Nowhere does Euclid mention color-per-
ception or light, nor does he address the issue of how visual impressions are
transmitted back to the eye for perceptual judgment. His primary concern
thus seems to have been to establish the principle of rectilinear radiation on
minimal physical grounds in order to set the stage for a geometrical analysis of
sight.

Prolemy, on the other hand, did address the issues ignored by Euclid.
Unfortunately, the details of his physical account have been lost with the first
book of the Optics, but there are sufficient clues scattered throughout the
remainder of the work to permit us to reconstruct his explanation in a general
way. For one thing, it is clear that his theory of vision was not monocausal;
like Plato and the Stoics, he recognized the need for external illumination if
vision was to be effective. This point is illustrated in the following passage

from Optics, 11, 4 (p. 71):

[1.12] Now luminous compactness (lucida spissa) is what is intrinsically
visible, for objects that are subject to vision® must somehow be luminous,
either in and of themselves or from elsewhere, since that is essential to [the
functioning of] the visual sense; visible objects must also be compact in
substance in order to impede the visual flux, so that its power may enter into
them rather than pass through without incident effect. Thus, it is impos-
sible for anything to be seen without these two conditions being met, nor
[can anything be seen] when one of them is met without the other.

For vision to occur, the visible object must have enough substance to be felt by
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the impinging flux, provided that it is properly illuminated. But luminous
compactness is not itself visible; color is the sole property of external objects
accessible to sight. Thus, as Prolemy puts it in Optics, 11, 13 (pp. 74-75):

[1.13] A [sole] proper sensible can be found that is appropriate to each of
the senses; e.g., the quality of “resisting the hand” for touch, savors for taste,
sounds for hearing, and odors for smell . . . . [but] color is perceived by no
sense but sight. Thus, color must be the proper sensible for sight, and that is
why color is taken to be what is primarily visible . . . .

Color, for Ptolemy, is not a mere subjective phenomenon arising from a physical
interaction between visual flux and external objects—as, for instance, Plato
contends (see passage 1.9 above). Prolemy is emphatic in according color
absolute objectivity, a point that comes through clearly in the following pas-

sage from Optics, 11, 12 and 16 (pp. 74 and 76):

[1.14] Since light and visual flux strike the surfaces of bodies together, it is
quite appropriate that the first thing to be sensed in all visible objects is a
characteristic of their surfaces. And color is more properly attributed to
surface than to the interior of things. For this reason, the ancients used to
equate surface and color, because color is a certain property affixed to the
substance of an illuminated thing, and the genus “surface” is like that; and
so it is an apt designation for it . . . . It is therefore obvious from what we
have said that color truly inheres in these objects and belongs to them by
nature, and it is seen only when light and visual rays combine to make it
effective. [Hence] either something that is self-luminous or something that
is rendered luminous in some similar way should highlight colors by mixing
with them at the surface, because [light] is generically related to none of the
visible properties but color. It relates to itself, however, as [if providing]
“form” to the “matter” of color.”

From the preceding two passages it is evident that Prolemy follows Aristotle
closely in defining color not only as the proper object of sight but also as an
inherent quality of external objects. Moreover, he is aligned with Aristotle (as
well as Plato and the Stoics) in reducing light to the status of mere catalyst for
vision rather than a visible entity in its own right. It is, in fact, nothing more
than “[the color of] an object that shines from inherent whiteness or thar is

exceedingly polished, for each of these is a case of brightness, and brightness is
a kind of luminosity” (Optics, 11, 5, pp. 71-72).
Whatever his apparent affinity with Aristotle, Ptolemy clearly departs from

him in positing visual flux as the primary vehicle of sight. Yet, as the followin

I g I y g g
passage from Oprics, I1, 23 (pp. 79-80) shows, this departure is not as radical
as it may at first appear:

[1.15] According to what we have presupposed, we see any luminosity or
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color by means of a passion arising in the visual flux . . . . Indeed, the passion
arising in the visual flux is [called] “illumination” or “coloring.” Illumina-
tion by itself, however, is a sort of excess-condition in luminous objects, so it
hurts and offends the [visual] sense. Illumination is also created along with
coloring in objects that are struck by light from outside. Light and color are
also transformed into one another by a transition of one into the species of
the other, since luminosity provides the genus for both. And if light falls
upon it, color becomes luminous, while light, if it is colored, is obviously
altered. The visual flux, on the other hand, provides nothing qualitative to
either of them, for it is necessary that the sense [of sight, which is] perspicu-
ous, should have no qualification but should be pure and should suffer the
qualification [passed to it] by light and color, because it shares their genus.
Nevertheless, it does undergo a straightforward qualitative alteration from
all colors and light.

Once it has established physical contact with an illuminated object, visual flux
provides the means by which the object’s color is conveyed, through a sort of
“passion,” to the eye. Being “perspicuous” and, therefore, lacking intrinsic
visible qualities, the visual flux serves the very same function as the transpar-
ent medium adduced by Aristotle: it sustains the qualitative transformation
that is generated by the visible color and passed to the eye. Like the Stoics, to
whom he is certainly indebted, Prolemy bases his account of vision upon both
extramissionism (in the establishment by visual flux of a physical link between

eye and object) and intromissionism (in the transmission of the resulting vi-
sual impression back to the eye through that link). Like Aristotle, however, he
grounds that visual impression in color, and color alone.

Color and Color-Perception: To this point we have looked at two apparently
contradictory theories of color in antiquity: the Platonic theory, according to
which color seems to be absolutely subjective, a psychological effect created by
dilation and contraction of the visual flux (see passage 1.9 above), and the
Aristotelian theory, according to which color seems to be absolutely objective,
an inherent quality of things that is independent of any psychological agency
(see passage 1.4 above). Yet, despite these real—and fundamental—differ-
ences, the two theories were based on the same crucial assumption, one that
was in fact common to virtually every ancient thinker: namely, that black
and white are the polar constituents of all colors. Thus, for the most part,
colors are differentiated according the relative proportion of black and white
that go into their formation; the whiter, the more vivid the color, and, by
extension, the blacker, the less vivid itis. The following passage from Aristotle’s
Sense and Sensibilia, 3, 439b20-440a12 (p. 698) illustrates this supposition
quite clearly:
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[1.16] Itis conceivable that the white and the black should be juxtaposed in
quantities so minute that either separately would be invisible, though the
j()inr Pl'()dUC[ \r\"()llld l)C Visil)]c; 1[“(_! [h;l[ [ht’y Sl]()llld tllllS I]«lVC th ()[l‘lL‘I‘
colours for resultants. Their product . . . must be of a mixed character—in
fact, a species of colour different from either. Such, then, is a possible way of
conceiving the existence of a plurality of colours besides the white and black;
and we may suppose that many are the result of a ratio.

Another [way to explain the genesis of intermediate colours] is that the
black and the white appear the one through the medium of the other, giving
an effect like that sometimes produced by painters overlaying a less vivid
upon a more vivid colour, as when they desire to represent an object appear-
ing under water or enveloped in a haze, and like that produced by the sun,
which in itself appears white, but takes a crimson hue when beheld through
a fog or a cloud of smoke.

But what a given color is can be quite different from what it appears to be. For
instance, colors can be perceived quite differently according to the light under
which they are seen. Likewise, they can appear different when seen through
such media as water or mist. Thus, as the matter is put in the Pseudo-Aristo-

telian On Colours, 3, 793b14-21 (p. 1222):

[1.17] We never see a colour in absolute purity: it is always blent, if not
with another colour, then with rays of light or with shadows, and so it as-
sumes a tint other than its own. That is why objects assume different tints
when seen in shade and in light and sunshine, and according as the rays of
light are strong or weak Again they vary when seen by firelight or
moonlight or torchlight, because the colours of those lights differ some-
what. . . . Thus all hues represent a threefold mixture of light, a translucent
medium (e.g., water or air), and underlying colours from which the light is
reflected.

One more variable must be taken into account if we are to evaluate color-
perception in all its complexity. Just as the quality of illumination from exter-
nal light-sources, such as the sun, the moon, or fires, can modify color-per-
ception, so can the quality of visual illumination. And the primary determi-
nant of that quality is the strength or weakness of the visual radiation, which

in turn varies with a number of factors, distance being the most salient. Ac-

cordingiy, the weaker the visual illumination, the less vivid the msulting color-

perception; but since vividness determines hue, then a given color seen under
these conditions will appear of a different hue than it should. Aswe will see in
our study of the rainbow in Section V below (see esp. passage 5.2), this model
of color-perception and its modification by the weakening of visual radiation
provides the key to understanding Aristotle’s analysis of the color-bands in the
rainbow.
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All in all, then, even the most objective accounts of color in antiquity—
Aristotle’s being the most salient example—were moderated by a clear under-
standing that color-perception depends upon a variety of factors beyond the
mere quiddity of the color seen. The quality of light under which the color is
seen, the distance of the observer from the color, the medium through which
the color is viewed, all played a part in how the given color would be appre-

hended by the perceiver.

2. The Physiology of Vision

Anl()l‘lg [hc (,;I‘L’t’l( (‘)[,)t]‘.(:'dl thC()riStS CL]r['entl}’ kn(')\Nn O us, no one bC‘f‘OrC
Galen offered a systematic and coherent functional account of the eye as a
visual instrument. To be sure, pre-Galenic theorists referred in passing to
basic features of the eye and its internal structure, but it is impossible on the
basis of such occasional references to get a clear picture of how these theorists
understood the eye and its specific function in sight. Empedocles, for in-
stance, is reported by Theophrastus, in On the Senses, 7 (pp- 71-73), to have
held that:

[1.18] perception occurs because something fits into the passages of the
particular [sense organ]. For this reason the senses cannot discern one
another’s objects, he holds, because the passages of some [of the sense or-
gans] are too wide for the object, and those of others are too narrow. . . .
Then he attempts to tell us the character of the organ of vision. Its interior,
he says, is of fire; while round about this [internal fire] are earth and air,
through which the fire, by reason of its subtilty, passes like the light in lan-
terns. The passages [of the eye] are arranged alternately of fire and of water:
by the passages of fire we perceive white objects; by those of water, things

black; for in each of these cases [the objects] fit into the given [passages].

Democritus, on the other hand, emphasizes the watery nature of the eye, for it
is by virtue of its moistness that the “reflection,” or emphasis, that produces
vision is effected at the corneal surface (see passage 1.3 above). The visual
percipience of the eye would thus seem to be tied to the intrinsic moistness

that makes it receptive to the visual impressions created by emphasis. Further-

more, if emphasis is the primary mechanism of vision, the cornea must repre-
sent the point of initial visual sentiency.

Aristotle agrees with Democritus that the watery nature of the eye gives it
its peculiar receptivity to visual impressions but disagrees with him about the
mechanism of impression. As he puts it in Sense and Sensibilia, 438a5-16 (pp.
695-96):

[1.19] Democritus . . . is right in his opinion that the eye is water; nor,

however, when he goes on to explain seeing as mirroring . . . . True, then, the
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visual organ is composed of water, yet vision appertains to it not because it is
water, but because it is transparent—a property common alike to water and
to air. But water is more easily confined and more easily condensed than air;
[so] the pupil, i.e., the eye proper, consists of water.

So far, fire and water have been cited as the instrumental constituents of the
eye. Diogenes of Apollonia (fl. c. 430 B.C.) offers yet a third possibility,
which is described by Theophrastus in On the Senses, 39-40 (p. 101):

[1.20] Diogenes connects the senses with the air, even as he connects it with
both life and thought. He would accordingly seem to ascribe [perception]
to likeness; for, he holds, there would be neither activity nor passivity unless
all things were from a single [source]. Smelling is effected by the air about
the brain; since the air is massed there and is commensurate with odour;
while the brain of itself, with its ducts, is already of light consistency . . . .
Sight arises when objects are reflected in the pupil, but it occasions percep-
tion only when mingled with the internal air. This is capable of proof: for if
the ducts [the optic nerves?] become inflamed, there is no union with the
internal [air], and sight is impossible, although the image is still there as
before.

‘Two aspects of this account are worth noting. First, unlike the other theorists
cited, Diogenes links the eye itself to the seat of perception (in the brain),
using air as the crucial mediating entity. In short, he offers a basic, although
vague, anatomical model of visual perception. Second, Diogenes emphasizes

the distinction between vision, as a mere physical process (through emphasis),

and vision as a perceptual process (through mingling of the emphatic impres-
sion with the internal air that connects the eye and brain).

Suffice it to say, the accounts given to this point offer no systematic physi-
ological model of vision. For that we must leap several centuries ahead to
Galen, who deals with the anatomy and physiology of vision at great length in
On the Usefulness of the Parts. Let us start with his description of the brain in
VIII, 6 (p. 398) of that work:

[1.21] Insubstance the encephalon [i.e., the brain] is very like the nerves, of
which it was meant to be the source, except that it is softer, and this was
proper for a part that was to receive all sensations, form all images, and
apprehend all ideas. For a substance easily altered is most suitable for such
actions and affections.

The brain itself has an internal structure, consisting of various hollows, or
ventricles, that are connected to one another throughout. It is within and
through these ventricles that psychic pneuma, the “material cause” that un-
derlies the act of reasoning, is formed and diffused. Thus, as Galen puts it in

On the Usefulness of the Parts, IX, 4 (p. 432):
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[1.22] [Elsewhere] I have given the demonstrations proving that the ratio-
nal soul is lodged in the encephalon; that this is the part with which we
reason; that a very large quantity of psychic pneuma is contained in it; and
that this pneuma acquires its own special quality from elaboration in the
encephalon.

Thus, although the brain is the seat of reason, as well as of sensation, it is

psychic pneuma that is the ultimate medium for sensitive and intellectual

functions (note the affinity with Diogenes’ account in passage 1.20 above).

Psychic pneuma, in its turn, is generated from vital pneuma that is carried to
the brain through the carotid arteries to the retiform plexus at the base of the
brain.® “Here,” concludes Galen in On the Usefulness of the Parts, IX, 4 (pp.
432-33):

[1.23] we see that both the retiform plexus and other features of its con-
struction are in wonderful harmony . . . . For the whole encephalon is inter-
woven with these intricately divided arteries, many of whose branches end at
its ventricles; [and] remaining for a very long time in the arteries, the [vital]
pneuma is elaborated, but when its elaboration is complete, it falls at once
into the ventricles of the encephalon; for it ought not to be delayed longer,
nor should it escape before it is elaborated.

Much like the heart, with its venous and arterial connections, the brain is
linked to the body through a complex network of nerves. Part of this network
consists of the two optic nerves, which are hollow throughout. Branching off
from the front of the brain, these two conduits join at the optic chiasma and,
after being re-separated, reach their respective eyes, to which they are attached
at the rear. The ocular globe itself consists of various humors, among which
the vitreous humor fills most of the globe. This humor is adjoined toward the
front of the eye by the crystalline humor, which is encased within the lens.
Between the lens and cornea, finally, lies the aqueous humor. The outer shell
of the eye consists of various tunics, from the sclera and cornea on the very
outside, to the choroid, iris (whose perforation at the center forms the pupil),
and retiform tunic (i.e., retina) inside. These tunics serve a variety of func-
tions from protection to nutrition. With these anatomical features in mind,
let us look at Galen’s sum mary of visual physiology in On the Usefulness of the

Parts, IX, 6 (pp. 402-403):

[1.24] Itis absolutely necessary for each of the [sense organs] to be altered if
sensation is to occur. They are not, however, all altered by every perceptible
thing; rather, the bright luminous sense instrument [i.e., the eye] is altered
by colors, the airlike instrument [i.c., the ear] by sounds, the vaporous in-
strument [i.e., smell] by odors, and in a word, like is perceptible by like. The
airlike sense instrument can never be altered by colors, for if an instrument
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is to undergo alteration by colors easily and simply, it must be radiant pure
and bright . . . . Hence, none of the sense instruments except the instrument
of vision will be altered by colors, for vision alone has a sense instrument
that is radiant, pure, and glistening, namely, the crystalline humor . . . . But
it would be of no use for this alteration to take place unless it was recognized
by the ruling principle which forms images, remembers, and reasons. Ac-
cordingly, the encephalon extends a part of itself [via the optic nerves] to the
crystalline humor in order to know how it is being affected, and this out-
gl'()wth iﬁ P[’(}pfr]}" lh"\' ()I]Ey one to ]]'dVC d PL‘I’(.’CPI“)[L‘ Cl]<1|1IlL'I, l)k'L’lluS(' it
alone contains a very large amount of the psychic pneuma

. . since the sense instrument of vision must be made bright and radiant, a
great deal of pneuma is properly sent to it from the source, and from the
encephalon itself there is extended to it a pure, unadulterated offshoot [i.e.,
the system of optic nerves]. . . . As regards the eyes, even though they are
covered as closely as possible on all sides, alteration from external colors
easily reaches the part of the encephalon contained in them. For the [cor-
nea] is so thin, clear, and pure, that it closes off neither this part nor the
alteration that passes through it, and after the cornea, directly at the pupil,
comes the crystalline humor, to which the part of the encephalon contained

in the eye is adnate.

The “ru]ing principle” to which Galen adverts in the prcccding passage 1s
essentially the same as the Stoic hegemonikon, which is the psychological fac-
ulty that directs and assesses all animal and intellectual functions. Using psy-
chic pneuma as its medium of activity, this ruling principle is ultimately re-

sp()nsiblc for mal(ing sense of the visual information p;lsscd to 1t th'(mgh the

optic pathway from the crystalline lens. The anterior surface of the crystalline
lens has thus replaced the cornea as the locus of initial visual sentiency. That
sentiency, in turn, is animated by the psychic pneuma that is diffused through-
out the optic system from the “source” in the brain.

The physiological model of vision that Ptolemy seems to have had in
mind is consistent, at least in a general way, with that of Galen. Thus, al-
though he apparently accepts the cornea rather than the crystalline lens as the
seat of initial visual sentiency, he adduces a Governing Faculty (virtus regitiva)
to control visual perception tln‘mlgh a “nervous principle.” There are strong
indications, moreover, that he thinks in terms of a physiological pathway for
sight. Accordingly, he lodges the immediate source (principium) of visual flux
at the center of the eye but put both eyes under control of an ulterior source
(principium = Apex) that may lie in the optic chiasma. Prolemy therefore
seems to have understood the visual pathway according to a hierarchy of agent-
sources, from the Governing Faculty in the brain, through the controlling
source at the optic chiasma, to the immediate source of visual flux at the

center of the eye.? Accordingly, he must have conceived of the visual process
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in terms of stages along that pneumatically-charged pathway. If not Galenic
in actual inspiration, Ptolemy’s model of visual physiology is certainly Galenic
(perhaps “Alexandrian” is more apt) in spirit.

3. The Psychology of Visual Perception

The Aristotelian Account: As with the physiology of vision, so with the psy-

chology of visual perception, few of the extant sources offer a systematic ac-
count of how visual information is assimilated and assessed by the sensitive
and rational faculties. Aristotle’s On the Soulis one of those few. In it he offers
a clear schema, according to which vision is analyzed in three basic levels:
brute sensation, perception, and apperception. Let us start with an analogy

offered by Aristotle in On the Soul, 11, 1, 412b18-22 (p: 657):

[1.25] Suppose that the eye were an animal—sight would have been its soul
[i.e., its animating principle], for sight is the subtance or essence of the eye
which corresponds to [its functional nature], the eye being merely the mat-
ter of seeing; when seeing is removed the eye is no longer an eye, except in
name—it is no more a real eye than the eye of a statue or of a painted figure.

The eye can thus be considered in two ways. On the one hand, as a mere
physical entity, it is nothing more than its constituent matter. On the other
hand, as a sentient entity, it is endowed with a certain level of animacy that
permits it to “feel” the color-impression that arouses sight. Moreover, Aristotle

continues in On the Soul, 11, 5, 417a12-418a6 (pp. 663-65):

[1.26] ‘sense’. .. must have two meanings, sense potential and sense actual.
Similarly, ‘to be a sentient’ means either (a) to have a certain power or (b) to
manifest a certain activity. . . . [Therefore] what has the power of sensation is
potentially like what the perceived object is actually; that is, while at the
beginning of the process of its being acted upon the two interacting factors
are dissimilar, at the end the one acted upon is assimilated to the other and
is identical in quality with it.

As a sentient entity, then, the eye has the potential to grasp its proper sensible,
color, in such a way that, in actualizing that potential, it “becomes” the sen-
sible and, in so doing, also actualizes the potential of its proper sensible to be
seen. Brute visual sensation is therefore limited to the perceptual grasp of
color in a fundamentally non-judgmental way. “Each sense,” Aristotle con-
cludes in On the Soul, 11, 6, 418a14-17 (p. 665), “has one kind of object
which it discerns, and never errs in reporting that what is before it is colour or
sound (though it may err as to what it is that is coloured or where that is, or
what it is that is sounding or where that is).” Properly speaking, then, the eye
sees color only in a generic sense; it makes no judgment about whether the
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color is red or green.

If visual perception were limited to color alone, of course, our apprehen-
sion of external reality would be far more impoverished than itis. So how is it
that we “see” so many other physical characteristics of that reality? In response
to this question, Aristotle adduces two additional types of sensibles: common
and incidental. The common sensibles, he informs us in On the Soul, 11, 6,

418a17-25 (p. 665):.

[1.27] are movement, rest, number, figure, magnitude; these are not pecu-
liar to any one sense but are common to all. [On the other hand] we speak
of an incidental object of sense where e.g. the white object which we sce is
the son of Diares; here because ‘being the son of Diares’ is incidental to the
directly visible white patch we speak of the son of Diares as being (inciden-
tally) perceived or seen by us. Because this is only incidentally an object of
sense, it in no way as such affects the senses. Of the two former kinds [i.e.,
special and common sensibles], the first kind—that of special objects of the
several senses—constitute the objects of sense in the strictest sense of the
term and it is to them that in the nature of things the structure of each

several sense is adapted.

The common sensibles are therefore not actually sensed; they are implicir in
(and thus conveyed by) the special sensibles and inferred mediately by a fac-
ulty of the soul that Aristotle calls the “common sensibility” (aisthesis koine).

This faculty, which possesses no specific organ, gathers the special sensibles

[ogct]lcr and, from them, forms a perceptible composite or “image” for per-

ceptual scrutiny. On the basis of such images, finally, we judge the repre-
sented objects to be “the son of Diares,” “Socrates,” “the sun,” or whatever. In
other words, just as the special sensibles convey the common sensibles, so the
common sensibles convey the incidental sensibles. It is at this level of percep-
tual scrutiny, of course, that error can arise in the form of misjudgments about
what is being represented.

To elucidate Aristotle’s three-stage account of visual perception, let us take
as an example the conclusion that “the white object which we see is the son of
Diares.” Suppose, first, that the eye actualizes the potential visibility of the
color-impression passed to it from Diares’ son. Thus “seen,” the resulting
image can be taken in two ways. At a physical level, it is nothing more than a
color-presentation. At a visual level, however, it is a depiction, so that, like a
painting, it conveys a variety of spatial characteristics that are not actually
present in it. Still, all we actually see at this level is the color-presentation
itself, nothing else. Or, to return to the example at hand, the resulting visual
impression consists of “white object.” It is as a depiction, however, that this
impression is passed to the common sensibility, which realizes the ulterior

spatial characteristics (i.e., the common sensibles) implicit in the visual im-
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pression. Accordingly, the common sensibility creates from the mere visual
representation a more elaborate internal image consisting of, say, “white ob-
ject of such-and-such a relative size and shape.” Like the visible representa-

tion from which it is created, this perccptiblc representation conveys certain

characteristics that are not actually present in it. Such characteristics (the so-
called incidental sensibles) are eventually elicited through mental scrutiny, the
result being an intellectual judgment that the “white object of such-and-such
relative size and shape” before us is in fact “the son of Diares.”

Ptolemy’s Account: Although Prolemy’s account of visual perception is con-
sonant with Aristotle’s, Ptolemy is far more concerned than Aristotle with the
problem of visual illusions arising from perceptual misjudgments. Indeed, it
would be fair to say that Ptolemy’s ulterior purpose in the Optics as a whole is
to correct such misjudgments by explaining them away. Take, for instance,
the case of reflection in a plane mirror. The very fact that we “see” the object
(or, more precisely, its image) behind the mirror represents a visual illusion
based on perceptual misjudgment. To correct this misjudgment, we must
know precisely how mirror-images are formed in relation to ourselves, as view-
ers, the mirror, and the represented object. As we will see in due course, the
fundamental corrective is to be found in the law of equal angles and the prin-
ciple of image-location.

Bearing this point in mind, let us start with Ptolemy’s discussion of the
visible properties in Optics, 11, 2-3 (pu71):

[1.28] The visual faculty apprehends corporeity, size, color, shape, place,
activity, and rest. Yet it apprehends none of these without some illumina-
tion and something [opaque] to block the passage [of the visual flux]. We
need say no more on this score but must instead specify what characterizes
each of the visible properties . . . . We contend, therefore, that these visible
properties exist in two ways, one of which depends upon the disposition of
the visible property [itself] and the other upon the action of the visual fac-
ulty.

Perhaps the most salient feature of Ptolemy’s list of visible properties is that it
includes four of Aristotle’s “common sensibles,”—size (or magnitude), sllape
(or figure), activity (or movement), and rest—all of which, with Prolemy’s
addition of place, define spatial characteristics. Unlike Aristotle, however,
Ptolemy makes a clear distinction between the objective grounds (“the dispo-
sition of the visible property”) and the subjective grounds (“the action of the
visual faculty”) of sight.

Taken objectively, Prolemy continues in Oprics, 11, 3-6 (pp. 71-72), the
visible properties can be distinguished in three ways:
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[1.29] some . .. are intrinsically visible, some primarily visible, and some
secondarily visible. Now luminous compactness is what is intrinsically vis-
ible, for objects that are subject to vision must somehow be luminous, either
in and of themselves or from elsewhere, since that is essential to [the func-
tioning of] the visual sense; visible objects must also be compact in sub-
stance in order to impede the visual flux, so that its power may enter into
them rather than pass through without incident effect . . . . On the other
hand, colors are primarily visible, because nothing, besides light, that does
not have color is seen. Still, colors are not intrinsically visible, since colors
are somehow contingent on the compactness of bodies and are not visible
per se without light . . .. All the rest of the aforementioned visible properties
are secondarily visible, because the visual faculty apprehends things as bod-
ies by means of their [inherent] colors and characteristics, whereas objects
that have no compactness, but are exceedingly tenuous and have no color
are neither sensed nor perceived as bodies by the visual faculty. Further-
more, size, place, and shape are perceived only through the mediation of
bodies’ surfaces, which coincide with the colors upon which external light
falls. Activity and rest, as well, are apprehended by means of an alteration,
or lack thereof, in any of the aforementioned visible properties.

Luminous compactness is therefore a precondition for seeing. Color, and

color alone, is the proper sensible for sight, the remaining “sensibles” being

conveyed mediately by it. As if to emphasize this mediating role, Ptolemy
continues his discussion of color in Optics, 11, 7, (p. 72):

[1.30] While the faculty of sight apprehends illuminated colors immedi-
ately, it apprehends the rest of the visible properties by means of such illumi-
nated colors, not insofar as they are colors but only insofar as they have
boundaries. For the visual faculty apprehends shapes and dimensions by
means of the boundaries of the colored object, while place is apprehended
by means of its location. The visual faculty also apprehends the motion or
rest of these same colors by means of their change or lack thereof. And the
motion or rest of shapes, dimensions, and location is perceived by means of
the motion or rest of the boundaries or places of the colored object.!? For
instance, an object that appears white certainly does not appear round, small,
near, or stationary on account of its whiteness, just as the characteristics of a
resisting object that the hand feels are not grasped through its hardness. On
the contrary, these properties are discerned by means of either the boundary
of whiteness or the boundary of hardness—the boundary in this case being
an essential characteristic [of that hardness] or its size according to its ex-
tended nature.

Given how we perceive visible objects and what it is about them that we per-
ceive, it follows that, if visual perception is to be veridical, certain threshold
conditions must be met. Otherwise, the object, or certain of its defining
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characteristics, will escape sight. For instance, if the boundaries delimiting

objects are inadequately clear—that is, if the colors of two abutting objects are
too similar to be distinguished—the separation between the objects will not
be discerned. But the primary threshold conditions have to do with visual
clarity, which can vary according to a number of factors. Prolemy discusses

several of these in Optics, 11, 18-19 (pp. 76-77):

[1.31] an object is seen more clearly when more visual flux impinges upon
it or when more light shines upon it—e.g., what is looked at directly is seen
more clearly than what is looked at by means of reflection or refraction.
Even so, an aggregation of [uninterrupted] visual rays is weakened when
they are extended out to a great distance. Also, what is looked at with both
eyes is seen more clearly than what is looked at with either eye alone. And
what is self-luminous is seen more clearly than what is illuminated by some-
thing else. Also, the larger or more numerous the luminous sources, the
more clearly the object upon which their light shines is seen. On the other
hand, among objects whose appearance depends upon the quality of [radia-
tive] effects, those that lie directly in front of, and art right angles to the rays

are seen more clearly than those that do not.!1

For everything that falls
orthogonally strikes its subjects more intensely than whatever falls obliquely.
Also, what is polished is seen more clearly than what is rough, because there
is disorder in a rough object resulting from the fact that its parts are not
arranged in a regular way. But the parts of a polished object have a certain
regularity, and [so] brightness is inherent to it. Dense objects, as well, are
more clearly seen than rare ones, because rare bodies give way to the imping-
ing [ray], whereas dense bodies resist it. Objects that radiate [light] by them-
selves are also seen more clearly than those that are lit by something else, and
so, for example, is an object that is seen in illuminated, rarefied air. Furcher-
more, objects that lie a moderate distance from the viewpoint appear more
clearly [than those that do not, whereas] objects that lie far away [from the
eye] appear less clearly, since the visual rays, as they stream outward, take on
some of the blackness of the air through which they pass. Thus, distant
objects appear nebulous, as if seen through a veil.

Variations in the flow of visual flux also play a part in visual discernment.
Ptolemy remarks in Optics, 11, 86 (p. 107):

[1.32] It is because of an abundance of visual power that objects are seen at
a distance. Hence, older people always look at an object up close, because,
a](mg with the rest of their faculties, the visual power is pr()ducr:d more
weakly in them. On the other hand, those who have deep-set eyes see far-
ther than those who do not have such eyes; and the reason for this is that
their visual power is compressed, for when it emanates from narrow places,
the visual flux is stretched and elongated.!2

Proper visual perception requires adequate time as well. Take the example
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given by Prolemy in Optics, I, 96 (p. 110), of a spinning potter’s wheel that is
daubed with various colors:

[1.33] In falling on all the [constituent] colors, the [visual flux] cannot
distinguish between first and last nor among those that [now] occupy differ-
ent locations. In fact, all the colors appear simultaneously throughout the
disc as a single, uniform color that is the same as the color that would actu-
ally be formed from a mixture of the constituent colors. By the same token,
if spots of a color different from that of the disc are marked on it (provided
they are not on its very axis), they will appear to form circles of the same
color [as the given spot] when the disc is rapidly spun.

All in all, then, clarity of visual perception is affected not only by physical
factors, such as too little (or too much) illumination or a weak flow of visual
spirit, but also by temporal and spatial factors, such as too little or too much
distance between eye and object,!? or too little time to perceive correctly. In
all these cases, though, the cause of misperception is external, not internal. In
short, the visual faculty itself is not to blame.

As to misperceptions or illusions that are due to the visual faculty itself,
Prolemy divides them into three basic types. The first type involves illusions
that are caused by physical alterations in the visual flux. Among these illu-
sions, the most striking is the so-called oculogyral illusion, which is discussed

in Optics, 11, 121 (p. 119):

[1.34] A particular kind of continuous sweep of the visual [flux] gives the
impression that the visible object is moving. This sort of sweep sometimes
occurs at the very source of the visual flux, as happens, for instance, in the
case of vertigo and fainting, whose effect reaches to the eye itself. For, while
striking the visible object, the ray continues to follow the motion of its source,
which has changed the direction of its focus, but the sense does not detect
this sort of [internal] motion.

Assume that a viewer spins clockwise for awhile, then stops. Evidently, what
happens in this case is that, once the original motion ceases, the flux at the
source (presumably at the center of the eye) continues to spin inertially in a
clockwise direction. Transmitted to the flux emanating from the eye, this
inertial spin causes the flux to pass over those objects in a clockwise direction.
Knowing himself to be at rest, yet not sensing the inertial motion of the flux,
the viewer interprets the clockwise scan of the flux in terms of a counterclock-
wise motion among the surrounding objects.

Reflection and refraction also distort the visual flux, causing a

misperception of the object’s location. Thus, as Ptolemy observes in Optics,
I1, 115 (pp. 117-118):

[1.35] In the case of reflection and refraction, . . . the object appears [to lie]
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directly in line with the [incident] visual ray, even though this is not actually
the case insofar as the ray is broken. Moreover, among objects thar are seen
in this way, some appear to lie closer than they actually are—the true mea-
sure being the distance between the objects and the viewers in combination
with the distance between the objects and the surface at which the breaking
occurs. Other objects, however, appear to lie at the same distance as the true
one, and others yet appear to lie at a greater distance [than the true one].14
In addition, certain objects are seen by those visual rays thar lie on the same
side with them, whereas others are scen by different rays, depending on the
SU[[‘HCL"SI]RIPCH ()f [h{' h(]diﬁ_‘s [‘h;lf causc [hC l)l‘L‘;l]\'ing; fhi}; iS lh(_' case, {‘()r
example, when we see left-hand objects with right-hand rays or higher ob-
jects with lower rays, and vice-versa.!®
Since the breaking of the ray is not felt, the image is seen along the continua-
tion of the incident ray rather than where it actually is. Moreover, the shape of
the reflecting surface can distort the image that appears along the incident ray
in various ways, so that the image misrepresents the object that generates it.
The resulting misapprehension of the object is therefore due to the way in
which the visual flux is reflected from the given surface.

The second basic type of illusion arises from perceptual misjudgments of
visual data that are presented correctly by the visual flux. As an example,
Ptolemy offers the following in Oprics, 11, 127-128 (p. 122):

[1.36] According to the colors applied to them, surfaces sometimes appear
convex and sometimes concave. Thus, a painter who wishes to represent
these two shapes by means of colors paints the part he wants to appear higher
a bright color, whereas the part he wants to appear concave he paints with a
weaker and darker color. This is why we judge a concave veil to be convex
when we view it from afar. The reason is not that the wind disposes it in
such a way that sunlight and the visual flux reach the area of concavity [blown
inward by the wind]. Rather, the reason is thar the [relatively] orthogonal
rays strike the middle of the veil so that it shows forth vividly, whereas at its
outer edges either no ray at all or a somewhat oblique one strikes it, which is
why it appears dark [toward the edge]. Accordingly, then, the edges of the
veil appear depressed while the middle appears elevated, and this is how
something that is actually convex appears.

Failure to distinguish relative motion and rest also belongs to this second type

of illusion. This failure is discussed in Optics, 11, 131 (pp. 123-124):

[1.37] When a boat stands still in a calm, waveless river that flows swiftly,
anyone in the boat who does not look at the shoreline beyond [but focuses
on the river] judges that the boat is moving swiftly upriver while the water is
standing still. The reason for this illusion is that the motion of the water
sensed by the visual flux, being opposite to that with which the boat is as-
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sumed to move, is manifested by the contrast between the color of the boat
and the color of the water. Now the contrast created by the motion of the
parts of the water’s surface alone is not clear to the sense because of the
uniformity of the parts of the [water’s] surface and the similarity [through-
out] of its color. Yet, according to the motion of the visual flux upon the
parts of the visible object’s surface, it is necessary that either the water or the
boat appear to move. Thus, since the water will appear calm, the motion
must appear to belong to the boat. On the other hand, if we look at the
water, the shoreline, and the boat all at the same time, and if we take cogni-
zance of the fact that the shoreline is stationary, then we will see that the
boat is stationary, since the boat is seen by the same rays that see the shore-
line. We will also see the water moving since we will have realized that the
boat and the shoreline are stationary.

The problem here is that, by focusing too closely upon a single aspect of the
given phenomenon (i.e., concentrating on the water flowing past the station-
ary boat without looking at the shoreline), the perceptual faculty misinter-
prets the phenomenon as a whole (i.e., judging that the boat, rather than the
water, is moving).

The third, and final type of visual illusion discussed by Ptolemy is due to
false mental inference. This type of illusion is at play, for instance, in the
interpretation of mirror-images. Thus, as Ptolemy explains it in Optics, 11,

138 (p. 126), when we regard ourselves face-on in a plane mirror:

[1.38] our sight shows us our [right-hand and left-hand] sides in the way
that is natural for it to show objects viewed directly: i.e., what is seen by
right-hand rays appears to the right, while what is seen by left-hand rays
appears to the left. Our mind, however, shows us right as left and left as
right, because objects that actually face us are so disposed that their right is
opposite to our left, while their left is opposite to our right. And this is why,
when we move one of our hands [in front of a mirror] our sight tells us that
the hand that moves [in the mirror] is the one facing it [i.e., right to right or
left to left], while our mind tells us the opposite.

What differentiates this type of illusion from the second sort involving per-
ceptual misjudgments arising from properly presented visual information is
that, in this case, the information is improperly presented. That is, the image
we see face-on in a mirror is presented to us as if it were of someone else facing
us directly. Our perceptual judgment of that image is therefore based on that
presentation, so that, in order to rectify the illusion, we must unpack it intel-
lectually.

Ptolemy’s analysis of visual illusions reflects his understanding of visual
perception as a three-stage process running from sensation, through percep-
tion, to apperception. The first type of illusion, which occurs at the level of




46 PTOLEMY AND ANCIENT OPTICS

brute sensation, involves “feeling” rather than judgment. This characteriza-
tion is evident, for instance, in the oculogryal illusion, the result of which is a

“feeling” that, even when the viewer stops spinning, his surroundings con-

tinue to rotate for awhile. Likewise, in the case of reflection, the object ap-
pears to be where it is not (i.e., directly along the line of sight) because the flux
fails to “feel” the impedance of the mirror-surface that breaks it. The second
type of illusion, for its part, involves the common sensibles and, therefore, the
perceptible characteristics of things. The example of illusionism in painting
illustrates this type of misperception perfectly. The very fact that we are able
to discern spatial characteristics in two-dimensional representations (e.g., trompe
L'oeil paintings) is a clear indication that it is not our eyes, but our brains that
are deceiving us. Finally, as to the third type of illusion, involving false mental
inference, it is evident that we are dealing not with common sensibles but
with incidental sensibles. Thus, in the case of image-reversal, the representa-
tion that we initially “see” is not of ourselves but of someone else facing us as
if through a window. The crucial feature of Prolemy’s analysis of visual illu-
sions is therefore not to be found in detail or specification; indeed, many of
the examples cited by him were part of a common stock gathered together
16

long before he wrote.!¢ It is, rather, to be found in the systematic way he fit

thar analysis into the broader framework of his theory of visual perception.

ok 3k ok ok K ok o KK

In his Theories of Vision from Al-Kindi to Kepler, the distinguished histo-
rian of science, David Lindberg, classifies Greek optical thought according to
three broad (albeit sometimes overlapping) traditions. The “medical” tradi-
tion, for its part, was “concerned primarily with the anatomy and physiology
of the eye and the treatment of eye disease.” The “philosophical” tradition, on
the other hand, was “devoted to questions of epistemology, psychology, and
physical causation.” The “mathematical” tradition, finally, was “directed prin-
cipally toward a geometrical explanation of the perception of space.”!7 While
this schema is far from ill-conceived as a heuristic, it is nonetheless potentially
misleading. For it can be taken to imply that, in limiting themselves to the
analysis of spatial perception, mathematical theorists were unconcerned, or
only marginally concerned, with physical, physiological, and psychological
issues. Their approach to optics, in short, was instrumentalist to the core.
That this is not the case, at least for Ptolemy, should be abundantly clear by
now. Far from ignoring physical, physiological, and psychological issues, in
fact, Prolemy confronted them head-on in order to provide a fully-articulated,
coherent theoretical context for his mathematical analysis of sight. Without a
proper appreciation of this theoretical context, our understanding of the de-
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velopment of mathematical optics, as outlined in the following three sections,
will be not only incomplete but badly distorted.
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NOTES

IDiogenes Laertius, Lives of the Eminent Philosophers 10.48-49, trans. R. D. Hicks,
Loeb Classical Library (Cambridge, MA: Harvard University Press, 1958-59), vol 2,
pp 577-79.

By “pupil” (Greek = kore) is meant the corneal surface above the pupil and through
which the pupil can be seen. In fact, such a conflation of pupil with cornea was
common among ancient authorities (see, e.g., passages 1.19 and 1.20 below).

The Greek term opsis, which is translated by “sight” here and by “vision” a couple
of lines below, has a range of meanings, including “visual flux” and “visual ray.” In
Euclid’s Optics, for instance, opsis is clearly meant to be taken as “visual ray.”

“Here, too, the Greek term is opsis.

°Note the obvious affinity with Aristotle’s descriprion of alteration in passage 1.5
above.

%The Latin term wvisus, which is translated by “vision” here, has much the same
range of meanings as its Greek counterpart opsis. Thus, at numerous places through-
out Prolemy’s Optics it should be taken to mean “visual flux” or “visual ray” rather
than “sight” or “eye.”

7As “form” to color’s “matter,” then, light is necessary for the actualization of
color’s visibility. Or, to put it another way, color without light, is potentially, but not
actually, visible, and so is light without color.

8This “retiform plexus” (the so-called rete mirabile) consists of an extraordinarily
fine network of arteries that is most noticeable in ungulates but does not, in fact,
occur in the human brain, where its counterpart is to be found in the Circle of Willis.

?Since most of the clues about Prolemy’s conception of the physiology of vision
are scattered throughout the Optics, particularly in book 3, we will simply signal them
as they crop up in various passages over the course of this study.

'0The perception of corporeity, which is not spatially determined, results from the
very act of seeing: since compactness is a precondition of sight, the fulfillment of that
precondition indicates to the viewer that what is seen is a body of some sort (cf.
passages 1.28 and 1.29 above).

"n other words, objects thart are seen toward the outer edges of the visual field
appear less distinct—and are thus perceived less clearly—than those nearer the center
of that field. By “radiative effects” Ptolemy means to implicate the dynamic proper-
ties of the visual radiation which can be likened to physical projection.

IZNote the similarity of this account to the Pseudo-Aristotelian account in passage

1.7 above of why myopes squint in order to improve their distance-vision.
13A standard classical example of how distance can affect visual perception is the
apparent rounding of square objects when they are seen from afar.
"For instance, in convex mirrors objects appear to lie farther away than they should.
15Here Prolemy is adverting to the image-inversion that can occur in concave mir-
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Trors.

I6Lucretius, for example, provides a long list in De rerum natura, 4, 324-44

\7 Theories of Vision (Chicago: University of Chicago Press, 1976), p. 1.







SECTION II

OPTICS PROPER: ANALYSIS OF DIRECT VISION

Well before the time of Euclid it was recognized that what we see depends
upon whether the object is viewed in unmediated fashion or whether it is
viewed by means of a reflecting or refracting surface. According to ray-analy-
sis, then, the domain of optics, taken at its most general level, can be divided
into three subdomains. On the one hand, optics proper is concerned with
vision that occurs by means of unbroken rays. On the other, catoptrics deals
with vision that occurs by means of completely broken rays. And, finally,
dioptrics covers vision that occurs by means of partially broken rays. In this
section we will deal with the first subdomain, starting with an account of the
geometrical and perceptual properties of the visual cone. We will then move
on to the perception of physical space, examining how the “common sensibles”
are apprehended according to visual ray analysis. We will conclude with a
discussion of binocular vision and the perceptual problems that arise from
improper accommodation.

1. The Visual Cone

As we have already noted, ancient mathematical optics was grounded in
the assumption that the eye radiates visual flux outward toward visible ob-

jects. The basic model of visual radiation is described succinctly in the first
three definitions (actually postulates) of Euclid’s Opzics (p. 2):

[2.1] Let it be supposed: (1) that straight lines diverge outward from the
eyes to comprehend vast spaces, (2) that these visual rays form a cone whose
vertex is located in the eye and whose base is formed at the boundaries of
visible objects, (3) that objects with which the visual flux makes contact are
seen, whereas those objects not contacted by the visual flux are not seen.

In the tenth book of On the Usefulness of the Parts, Galen offers a more elabo-
rate description (X, 12, pp. 492-93):

[2.2] Let there be acircle; . . . from the mid-point of the circle (which is also
called its center) think of a straight path to the pupil! of the eye that is seeing
it, a path not bending in any direction or deviating from its straight course;

51
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think rather of that straight line as you would of a thin hair or the filament
of a cobweb accurately stretched from the pupil to the center of the circle.
Again, from the pupil to the line which bounds the circle and is also called
its circumference imagine a series of very many other lines extending like
thin cobwebs. Call the figure bounded by all these straight lines and by the

circle a cone, and think of the pupil as its apex and the circle as its base.2

As propositions 2 and 3 of Euclid’s Oprics (pp. 4-6) illustrate, this model of
discrete radiation offers a simple explanation for variations in visual acuity
with distance:

[2.3] [PROPOSITION 2] Of equal magnitudes lying at a distance, those
lying nearer are seen more distinctly.

Let B [in figure 2.1] be the eye and GD and KL the visible [magni-
tudes]. It must be borne in mind that they are equal and parallel. Let GD
be the nearer, and let visual rays? BG, BD, BK, and BL fall [upon their
respective visible magnitudes]. Now we would not say thart the visual rays
passing from the eye to KL reach it through points G and D, for straight line
KL in [the supposedly resulting] triangle BDLKGB would be longer than
straight line GD. It is assumed [above] to be equal, so GD is seen with more
visual rays than KL. Therefore, GD is seen more distinctly than KL because
[identical] things seen under more [visual] angles [i.e., by more rays] appear
more distinct.

K

B

figure 2.1 figure 2.2

[PROPOSITION 3] Once a visible object reaches a certain distance [from
the eye], it can no longer be seen.

Let B [in figure 2.2] be the eye and GD a visible object. I say that GD
can reach a point at which it will no longer be seen. For let it be placed at K
in between the visual rays. Accordingly, none of the visual rays from B will
reach K. But whatever the visual rays do not touch will not be seen. Hence,
there is a certain distance at which any given object will no longer be seen.
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Finding this explanation unacceptable, Ptolemy offers an alternative based on
a dynamic conception of visual radiation: visual acuity is assumed to dimin-
ish with distance because of a continual weakening in the visual flux’s inten-
sity as it parts from its source at the vertex of the visual cone. Moreover, as will
become clear in the following passage from Ptolemy’s Optics, 11, 20 (pp. 77-

78), distance from the vertex of the visual cone is not the only factor affecting

visual acuity; obliquity with respect to the visual axis also plays a role, visual
acuity along the axis being optimal:

[2.4] And since [each] visual ray terminates at its own unique point, what is
seen by the central ray—i.e., the one that lies upon the axis [of the visual
cone]—should be seen more clearly than what is viewed to the sides [of the
visual axis] by lateral rays. The reason is that those rays lie nearer to [the edge
of the visual cone where there is an increasing] absence [of rays], whereas
those rays that approach the [visual axis] lie farther from [such an area of]
absence.* The same holds for objects that lie toward the middle of spherical
sections whose centerpoint is the apex of the visual cone, because the gener-
ating point of the sphere itself and powers that approach their generating
sources are more effective. The farther such powers extend from their sources,
then, the weaker they become—as, e.g., [the power of] projection [in rela-
tion to] the thrower, or of heat in relation to the heater, or of illumination in
relation to the light-source. Therefore, since the visual ray within the cone
has two primary referents, one being the centerpoint of the [ocular] sphere
where the vertex of the visual cone lies and the other being the straight line
that originates at this point and extends the whole length [of the cone] to
form its axis, it necessarily follows that the visual perception of what lies far
from the vertex of the cone is carried out by a more weakly-acting ray than
the visual perception of something lying at a moderate distance. The same
holds for objects that lie far from the visual axis in comparison to those that
lie near it.?

Ptolemy thus treats the ray as a trajectory along which the visual flux hurtles
like a projectile. But it is crucial to realize that this kinetic model is intended
virtually, not really. In fact, as the following excerpt from Optics, 11, 50 (pp.
91-92), makes abundantly clear, Prolemy considers the ray itself as a virtual,
not a real entity:

[2.5] It is not because it falls within the gap between visual rays that an
extremely small visible object is not seen. On the contrary, it must be un-
derstood that, as far as visual sensation is concerned, the nature of visual
radiation is perforce continuous rather than discrete. But if we set up math-
ematical demonstrations and treat the visual rays as if they are straight lines,
[it follows that] large magnitudes lying the same distance away as small ones
that are invisible because of their smallness will still be clearly seen. This
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would not happen if the visual rays at that distance were diminished [in
number] and spread out; instead, a large and a small object would look the
same at that location. For if all the radiation that falls on their cross-sections
along the entire base [of the visual cone] is composed of discrete rays, each of
which apprehends a [single] point [on the given object], then, assuming that
there is some real, spatial separation between those points, whatever lies far
away ought not to be seen because the visual flux does not fall on those
linterpunctal gaps]. Not even the points will be seen, because they have no
size and do not subtend any angle. Hence, every such object [seen in this
point-by-point way] will be invisible.

Taken as a discrete, mathematical line, the visual ray is obviously an analytic
fiction for Ptolemy. The problem is how to justify the use of ray-analysis in
accounting for intensity-variation; how, for instance, can we talk about “ag-
gregation” and “concentration” of something that is continuous? Prolemy’s
response to this apparent contradiction is to treat radiation (whether visual or
luminous) as virtually, not really discrete, with the flux or light being treated
as particulate and the ray being reduced to a trajectory of sorts. As we shall
later see, this kinetic model of radiation is particularly useful for the analysis
of reflection and refraction.

2. The Visual Perception of Physical Space

Whether it is taken as a real entity or as a mere analytic fiction, the visual

ray is expressly designed to account for the visual perception of physical space
insofar as it mathematically defines the relationship between eye and external
objects. What gives the ray such power of definition is its perfect rectilinearity,
for which Hero gives a physical justification in Cataptrics, chapter 2 (p. 320):

[2.6] The arrows we see shot from bows may serve as an example. For,
because of the impelling force the object in motion strives to move over the
shortest possible distance, since it does not have the time for slower motion,
that is, for motion over a longer trajectory. And so, because of its speed, the
object tends to move over the shortest path.

Moreover, that the rays emitted by us travel at an immeasurable velocity
is evidenced by the fact that, when we have closed our eyes and then re-
opened them to look at the heavens, it takes no perceptible time for [the
visual rays] to reach the heavens, for just as our eyes are opened, we see the
stars, even though the distance is, so to speak, infinite.

Hero’s justification for the rectlinearity of rays is thus contingent upon two
interdependent suppositions. On the one hand, the radiation is so swift that
it “does not have the time” to move more slowly. On the other hand, because
it is pressed for time, it necessarily takes the shortest point-to-point path: i.e.,
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a perfectly straight one. Aswe will see in the next section, Hero puts the least-
path supposition to good use in accounting for the equal-angles law in reflec-
tion.

Perfect rectilinearity is not the only characteristic of visual rays. As Euclid
points out in the fifth and sixth definitions of the Optics (p. 2), they also
possess directional privilege. Hence, “objects seen with higher rays appear

higher, whereas those seen with lower rays appear lower; and objects seen with

right-hand rays appear to to the right, whereas those seen with left-hand rays
appear to the left.” Itis this directional privilege that enables the visual rays to
map physical space within the plane defined by the visual cone’s base. Propo-
sitions 10 and 12 of Euclid’s Op#ics (pp. 16-18 and 20) illustrate the applica-
tion of this principle:

[2.7] [PROPOSITION 10] The more distant parts of planes lying below the
eye appear higher.

Let the eye at A [in figure 2.3] be placed higher than BED, and let visual
rays AB, AE, AD, and AG make contact with it, AB forming the cathetus
[i.e., being perpendicular] with the underlying plane. Isay that GD appears
higher than DE but that DE appears higher than BE.

A

E

figure 2.3

Let point Z be taken on BE, and let perpendicular ZI be dropped. Be-
cause the visual rays reach ZI before ZG, let AG strike ZI at point I, AD at
point T, and AE at point K. Thus, point I'is higher than T, whereas T is
higher than K. But G lies on the same ray as I, T on the same ray as D, and
K on the same ray as E. But DG is seen according to AG and AD, whereas
DE is seen according to AD and AE. Consequently, DG appears higher
than DE. So, too, DE will appear higher than BE, for objects seen accord-
ing to higher rays will appear higher.

[PROPOSITION 12] Among magnitudes extending outward [beyond the
eyes], those that lie to the right seem to verge toward the left, whereas those lying
to the left seem to verge toward the right.

Let AB and GD [in figure 2.4] be two magnitudes that are viewed, and




PTOLEMY AND ANCIENT OPTICS

let E be the eye, from which rays ET, EK, FA,
EZ, El, and EG emanate. I say that EZ, EI,
and EG seem to verge [successively] toward
the left, while ET, EK, and EA seem to verge
[successively] toward the right. K

A

For, since EZ lies further to the right than
El, as does EI than EG, it follows that [the i
object seen by] EG appears to the left of [the
object seen by] EI, as does [the object seen
by] EI [in relation to the object seen] by EZ.
By the same token, [the objects seen by] rays
EK, EA, and ET appear to verge toward the figure 2.4
righr.(’

Prolemy, too, endows the rays with directional privilege in the plane of the
visual field (i.e., up-down and right-left along the horizontal), but, unlike
Euclid, he extends this directional privilege to the plane of the visual axis, thus
allowing the visual faculty to judge distance along the vertical as well as rela-
tive disposition along the horizontal. Accordingly, as he summarizes it in
Optics, 11, 26 (pp. 81-82):

(2.8] The visual faculty also discerns the place of bodies and apprehends it
by reference to the location of its own source-points [i.e., the vertices of the
visual cones] . . . as well as by the arrangements of the visual ray falling from
the eye upon those bodies. That is, longitudinal distance [is determined] by
how far the rays extend outward from the vertex of the cone, whereas breadth
and height [are determined] by the symmetrical displacement of the rays
away from the visual axis. That is how differences in location are deter-
mined, for whatever is seen with a longer ray appears farther away, as long as
the increase in [the ray’s] length is sensible.

As far as Euclid is concerned, the cardinal determinant of spatial perception is
the visual angle, which provides the basis for judging size. As he phrases it in
the fourth definition of the Oprics (p. 2), “objects viewed under a larger angle
appear larger, whereas those viewed under a smaller angle appear smaller, and
those viewed under equal angles appear the same size.” Typical examples of
this principle’s application can be found in the first part of proposition 6 and
in proposition 56 of Euclid’s Optics (pp. 8-10 and 116):

[2.9] [PROPOSITION 6] The intervals between parallels appear unequal
when seen from an [increasing] distance.

Let AB and GD [in figure 2.5] be two parallel magnitudes, and let E be
the eye. I say that AB and GD do not appear [to maintain] the same dis-
tance apart, and that a nearer interval between them will always appear larger
than a farther one.
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Let visual rays EB, EZ, ET, EK, EI, and ED be dropped [to the respec-
tive parallels], and let BD, ZI, and TK be joined. Thus, since angle BED >

angle ZEI, BD appears longer than ZI. Moreover, since angle ZEI > angle

i

A G

E

figure 2.5 figure 2.6

TEK, ZI appears longer than TK. Therefore, BD appears longer than ZI,
and ZI appears longer than TK. Consequently, parallels will not seem to lie
the same distance apart [throughout] but will seem unequally separated.”

[PROPOSITION 56] Magnitudes appear to get nearer as they get larger.

Let AB [in figure 2.6] be the magnitude that will be seen, and G the eye,
from which visual rays GA and GB emanate. Let BA enlarge to become
BD, and let visual ray GD be dropped [to it]. Accordingly, angle BGD >
angle BGA, so that BD appears larger than BA. But identical objects that
seem larger [than they are] appear to grow, and because objects closer to the
eye appear larger, magnitudes will appear to the eye to get nearer as they
enlarge.

Euclid is aware, however, that the visual angle alone is inadequate as a crite-
rion for judging size. Distance is a critical factor as well; yet, as he demon-
strates in proposition 8 of the Optics (pp. 14-16), the relationship between
apparent size and distance is not a matter of simple proportionality (i.e., a
given object seen at twice the distance will not appear half its original size):

[2.10] [PROPOSITION 8] Egqual and parallel magnitudes that lie at un-
equal distances from the eye do not appear proportional [in size] to the distances.

Let AB and GD [in figure 2.7] be two [equal and parallel] magnitudes at
unequal distances from the eye at E. [ say that it is not the case that [the
apparent size of] GD [in comparison to that of] AB is according to [the
ratio of ] BE to ED. For let the two rays AE and EG fall [to the respective
magnitudes], and from centerpoint E at distance EZ let arc IZT be de-
scribed. Therefore, since triangle EZG > sector EZI, whereas triangle EZD
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<sector EZT, triangle EZG : sector EZI > triangle EZD : sector EZT. So, by
alternation, triangle EZG : triangle EZD > sector EZI : sector EZT; and by
composition, triangle EGD : triangle EZD > sector EIT : sector EZT. But
triangle EGD : triangle EZD = line GD : line ZD, and line GD = line AB,
while AB : DZ = BE : DE. Thus, BE : DE > sector EIT : sector EZT.
However, sector [EIT] : sector [EZT] : angle IET : angle ZET. Hence, BE
: ED > angle IET : angle ZET. But line GD is seen under angle IET, whereas
line AB is seen under angle ZET. Therefore, the magnitudes, being equal,
do not appear proportional [in size] to the distances.

Prolemy agrees with Euclid that the visual angle is a primary factor in the
judgment of size, and he also recognizes that distance must be taken into
account. But gauging size depends upon more than the visual angle and dis-

tance. Orientation plays a critical role as well, as the following extended pas-

sage from Optics, 11, 53-63 (pp- 92-97) illustrates:

[2.11] All things being equal and equally disposed in everything except
distance, orientation, and angles, then, as far as distance is concerned, what-
ever is closer gives the visual impression of being larger, while, as far as orien-
tation is concerned, whatever faces us more directly appears larger. For in
both of these cases, the visual angles become larger. And when we say “di-
rectly facing,” we mean that the visual ray that falls on the center of the
visible object is perpendicular to it, whereas we say that an object is slanted
when none of the visual rays is perpendicular to it or when a ray other than
the one falling on its center is perpendicular to it. We also say that an object
is nearer when the ray that falls on its center is shorter, whereas we say it is
farther away when that same ray is longer.

Now the aforementioned two variables [i.e., distance and orientation] by
which the apparent size of objects is determined make no difference in the
sensible impression, but the remaining one does, for, if there is a difference
in that third variable, i.e., in the visual angles, then the object will appear
larger when the angle subtended by it is larger.8 For instance, if there are
two magnitudes, such as AB and GD [in figure 2.8], and if they lie the same
distance away at the same orientation but subtend unequal angles, then AB,
which subtends the larger angle at point E, will appear larger.
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And if there is a difference in [either] of the two remaining features alone,
then the object will never appear larger, no matter whether it faces us more
directly or whether it is closer. Thus, it will appear either smaller or equal,
and in each case the apparent size will depend on relative differences in ac-
tual size.

[EXAMPLE II.1] For instance, if two magnitudes, AB and GD [in fig-
ure 2.9], have the same orientation and subtend the same angle at E, then,
since AB does not lie the same distance as GD [from point E] but is closer to
it, AB will never appear larger than GD, as seems appropriate from its prox-
imity [to E]. Instead, it will either appear smaller (which happens when the
distance of one from the other is perceptible), or it will appear equal (which
happens when the difference in [relative] distance is imperceptible).

[EXAMPLE I1.2] Likewise, if there are two magnitudes, such as AB and
GD [in figure 2.10], that subtend the same angle at E and lie the same
distance from it, and if their orientation is different, [so that] one of them,
AB, faces E directly and the other obliquely, -
then AB will never appear larger than GD
on account of its facing orientation. In-
stead, AB will either appear smaller than
GD (which happens when the difference
in orientation between the two magnitudes
is perceptible), or it will appear equal to
GD when the difference in orientation is
imperceptible.

It seems, moreover, that size-compari-
son among these objects ordinarily springs
from judgment rather than from the ac- figure 2.10
tual nature of the orientation or distance.

For, if a given sensible impression of the angles is aroused, if certain objects
appear oblique or remote, and if one judges any of them to be smaller—even
though it may be the only one—still, while one object may not be visually




PTOLEMY AND ANCIENT OPTICS

sensed as smaller than another, but as equal [to it], we judge one of them to
be larger. If the difference in obliquity or distance is imperceptible, then the
two objects appear equal, but if that difference is perceptible, then they do
not.

[EXAMPLE I1.3] For example, in the [earlier] figure [i.e., 2.9], where
the orientation was the same, if we draw
A 7 prif E
the small angle formed by lines HZE and
ETK [in figure 2.11], then magnitude GD
will always appear larger than ZT, because
it is farther away, and the angle it subtends
is larger. But HK will never appear larger
than AB, since the judgment based on the
angle is not outweighed by a judgment
based on distance alone.? However, HK

will appear smaller than AB if the distances
and the angles differ perceptibly. But when
rh.cy differ lmpcrc.cprlhly.— the magnitudes figure 2.11
will appear equal, just as in the first case.

[EXAMPLE I1.4] On the other hand, in the [previous] figure [i.e., 2.10],
where the distance was the same but the orientation was different, let us
construct the small angle formed by lines KTE and EZH [in figure 2.12].
Accordingly, magnitude GD will always appear larger than ZK, for the size
of [its subtended] angle and the [amount of its] obliquity conspire to make
it appear larger. Yet HT will never appear larger than AB, because the judg-
ment based on the angle is not outweighed by the judgment based on orien-

tation alone.l® HT will, however, appear smaller [than AB] if the obliquity

and angles differ perceptibly, whereas, if they differ imperceptibly, it will
appear equal to it.

figure 2.12 figure 2.13

[EXAMPLEIL.5] If we leave both magnitudes oriented as they are in the
preceding figure and connect line GB [in figure 2.13], then GB will always
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appear larger than AB, since it is farther away and more oblique, and since
there is no difference in the angles. Moreover, GB will appear larger than
GD when the judgment based on distance outweighs that based on obli-
quity. But it will appear smaller than GD when the judgment based on
distance is outweighed by that based on obliquity. Finally, they will appear
equal when the judgments based on both variables are equal to the sense.

[EXAMPLE I1.6] If, however, both magnitudes differ in all three previ-
ously cited respects, as happens when we construct the ﬂgurc [2.14] with
both magnitudes similarly oriented and E
draw line GLMB, then GB will always
appear larger than ZT, because all three
variables (i.e., size of angle, amount of
obliquity, and distance) conspire to make
it appear larger. It also appears larger than
HK, because GB has two of the variables
(i.e., size of angle and obliquity) that make
an object [look] larger. On the other hand,
LM always [appears] smaller than GD,

since two variables make it do so—i.e.,

smallness of angle and proximity [to E].

The only variable belonging to GD to figure 2.14

make it appear smaller is its facing orien-

tation. Nevertheless, LM does not appear smaller than AB in all cases, for
AB has nothing but the size of [its] angle to make it appear larger, whereas
LM has greater distance and obliquity in its favor. Still, LM appears larger
when the difference in these two features together outweighs the difference
in angles. If the difference in these two features [together] is outweighed [by
the difference in angles], though, LM will appear smaller than AB, and if the
differences balance out, the magnitudes will appear equal.

That, then, is why we should not consider as adequate [the explanation
of ] those who have claimed that [in size-judgment] only distances should be
taken into account along with angles and their resulting impression, whereas,
they have claimed, any difference in orientation should be nullified in cases
where the distances are equal. For, although there may be no difference in
distance, a difference in orientation can still frequently occur. From this
comes a perception of size different from the one that is due to the angle, as
long, again, as we suppose this difference to be perceptible. Generally, there-
fore, since it seems that the size of visible objects is perceived by means of the
size of the visual angles, that [angular] variable should be more fundamental
and apposite [than the others in size-judgment].

Suffice it to say, because the interplay of these factors is complex and variable,

it is not clear under precisely what circumstances one outweighs the other.

Nonetheless, the very attempt to bring all three factors into account reveals
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the sophistication of Ptolemy’s approach to size-perception in comparison to
that of Euclid.

So far we have accounted for the perception of location and size—two of
the five “common sensibles” listed by Ptolemy at the beginning of the second
book of the Oprics (see passage 1.28 above). Of the remaining three (shape,
motion, and rest), shape is discerned by the grasp that the impinging visual
flux has of the object’s boundaries. In the frontal plane of the visual field,
shape is apprehended according to the cross-section of the visible object. Thus,
for instance, a circular object viewed frontally will be adjudged circular be-
cause all of its diameters appear equal. Euclid makes this point in the first part

of proposition 34 of his Optics (pp. 60-62):

(2.12] [PROPOSITION 34] Ifa straight line is erected from the center of a
circle at right angles to the plane of the circle, and if the eye is placed on [the
endpoint of | that line, then all the diameters drawn in the plane of the circle will
appear equal.

Let point A [in figure 2.15] be the cen-
ter of the circle, from that point let there
be erected a perpendicular to the plane of
the circle, and let the eye lie on that per-
pendicular at B. [ say the diameters will
appear equal. Let DG and EZ be two
diameters, and connect BG, BE, BD, and
BZ. Therefore, since [radius] ZA = [ra-

dius] AG, since AB is common, and since

the angles [at A] are right, it follows that ‘ \SER\Z
base BZ = base BG, and the angles formed E "
at the [respective endpoints of those] bases D

are equal. Thus, the angle [ZBA] formed
by ZB and BA = the angle [GBA] formed
by AB and BG. Likewise, angle EBA = angle ABD. Accordingly, the angle
formed by GB and BD = the angle formed by EB and BZ. But things seen
under the same angle appear equal. Therefore, GD [appears] equal to EZ.

figure 2.15

Euclid then goes on to show in succeeding propositions that a circle viewed
aslant does not appear circular but, rather, oblong. In all cases, however, the
analysis is essentially two-dimensional: that is, it assumes that shape-discrimi-
nation is made solely on the basis of cross-sectional comparisons.

Ptolemy adds nothing of moment to the Euclidean account of shape-
discrimation in the frontal plane (i.e., in two dimensions), but he does address
the issue of shape-perception in three dimensions. As we have already seen in
passage 1.36 above, color-contrasts provide one clue for such perception. Thus,
according to the example Prolemy gives there, an object appears convex if the
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central portion of it is more brightly colored than its edges. As far as the
mathematical analysis of shape-perception is concerned, though, Ptolemy of-

fers the following account in Optics, 11, 64-67 (pp. 98-99):

(2.13] The visual faculty perceives shapes by means of the shapes of the
bases upon which the visual rays fall. And it perceives the outlines of the
shapes by distinguishing the lines encompassing those bases as straight or
circular, these being the two principles that differentiate shapes. But it per-
ceives [the shape of] the entire defining surface [of the object]—in terms of
whether it is plane or spherical—by means of the surface of the [visual cone’s)
whole base . . . . Now a surface is perceived [as] plane when straight lines fit
everywhere throughout the entire base upon which the visual rays fall, whereas
a surface is perceived [as] spherical(ly curved] when circular arcs fit every-
where on all portions of the base.

A surface or line appears concave to us when the ratio between the visual
ray orthogonal to it and the oblique rays is greater than the ratio between the
corresponding [perpendicular and oblique] rays falling on a plane surface or
on [its constitutent] straight lines. Such [surfaces or lines] appear convex to
us when the [former] ratio is smaller [than the latter one]. These two shapes
[i.e., concave and convex] are alike, though, [insofar as] they are propor-
tional to one another and belong to the category of things, such as ascent
and descent, that are deemed “reciprocal.” Each of them is also congruent
with the other, the convex with the concave and the concave with the con-
vex, for what encompasses the outside is concave, whereas what is encom-
passed inside is convex. So too, objects are apprehended [as] concave by
means of the surfaces of convex bases [defined by impinging visual rays],
whereas objects are apprehended [as convex] by means of the surfaces of
concave bases, just as such objects are perceived by touch, convex ones being
apprehended through the concavity of the encircling hand, and concave ones
being apprehended through the convexity of the encircled hand.

The perception of convexity and concavity is thus a function ultimately of

distance-perception. In both cases, the shape of the surface is adjudged ac-

cording to the comparative lengths of the central and outlying rays: when the
central rays are proportionately shorter, the object is taken to be convex; when
they are proportionately longer, it is taken to be concave. By the same token,
an object is perceived as slanted when the rays touching one edge are sensed to
be proportionately shorter than those touching the opposite edge.

As to motion and rest, finally, the correct perception of both is ultimately
contingent on the viewer’s innate sense of his own motion or rest. The
centerpoint of the eye thus provides an absolute reference-point for judging
motion or rest, but the Governing Faculty is the final arbiter, as the following
passage from Optics, 11, 76 (p. 103) makes clear:

[2.14] The particular way in which locomotion is perceived, however, re-
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quires a special discussion if we are to explain how it happens and make
sense of the sort of change it represents. Visual perception of the phenom-
ena associated with locomotion depends primarily on the visual faculty itself
[rather than on the object undergoing the change]. A particular object ap-
pears stationary either when the vertex of the visual cone undergoes no per-
ceptible motion over a given continuous span of time, and the endpoint of a
given ray apprehends sensibly one and the same spot on the object, or when
it does undergo some motion, but it appears to the viewer that the displace-
ment of the viewpoint and the displacement of the rays by which the object
is visually grasped are equal during equal spans of time. The motion and
rest of the visual flux, as well as their degree, is apprehended not by the visual
faculty but by the sense of touch that extends to the Governing Faculty, in
the same way that we do not discern the motion of our hands by sight when
our eyes are are closed but by means of a continuous [sense-link] that reaches
to the Governing Faculty.!! We do, however, see a given visible object move
when the viewpoint [at the vertex] remains immobile over some minimal
perceptible span of time while a noticeable change somehow occurs in the
visual flux or when the displacement of the moving viewpoint is not equal to
the displacement of the visible object vis-a-vis succeding rays during equal
spans of time.

Perception of motion and rest is therefore relative to the internal sense of self-
motion or rest. If the viewpoint is stationary, for instance, and an object
passes through the flux emitted from it, that object’s motion is properly sensed.
On the other hand, if the viewpoint is in motion without the viewer’s sensing
it (via the Governing Faculty), the visual flux emitted by him will share that
motion, and, in passing over an external object, will cause the viewer to im-
pute his own motion to that object (or he will deem it at rest if it keeps pace
with the passage of the visual flux). Under normal circumstances, however,
the viewer will sense his own motion and will accordingly discern the object’s
motion relative to it. Prolemy illustrates these points in Optics, I1, 78-81 (pp.

103-105):

(2.15] [EXAMPLE I1.7] Take, first, the case of visible objects that move
directly toward or away from the eye. Let AB [in figure 2.16] be a given
visual ray, and let A be the vertex of the vi-

D B

sual cone. Then, if the eye is stationary and A 6

does not move during some continuous span
of time, and if the visual ray apprehends the figure 2.16
visible object at point B, it will indeed ap-
pear stationary. If the object is apprehended elsewhere than at point B, it
will of course appear farther away when it moves outward from point B,
whereas it will appear nearer when it moves inward from point B.

But if the eye moves directly toward or away from the object, e.g., from A




SECTION Il OPTICS PROPER

to G along line AB, and if the visible object D moves to B, then, if the place
at which the visible object [D] is [finally] encountered is where point B
previously lay, it will appear stationary, and ray AB will appear to have moved
the same distance, AG, as the eye. If the visible object is encountered in
some place other than B—if it is in fact at point D—then it will appear to
move toward the eye at the same speed [as the eye is moving]. If, however, it
is encountered at some point closer in than D, it will appear to move toward
the eye but more quickly. And if it is encountered at some point between B
and D, it will [appear to] move in the same direction but more slowly. Fi-
nally, if it is encountered anywhere beyond B, it will [appear to] move in the
opposite direction.

[EXAMPLE I1.8] Now let us take another example involving lateral
motion. From point A [in figure 2.17], which is the vertex of the visual
cone, let several rays, such as AB, AG, and

i e D
AD, be drawn, and let them remain fixed,
so they do not move. When the location

of the visible object is the same—e.g., when

A

it remains in line with AG—then it will
appear stationary. Butifits location is [sub-
sequently] different—e.g., if it is [subse-
quently] in line with AD or AB—it will
appear to move.

On the other hand, if the visual cone figure 2.17
pivots around its vertex A, and if we sup-
pose that the distances between the given rays are equal throughout and that
the motion occurs in the same [counterclockwise] direction, such that B
[moves] to G, while G [moves] to D, then any [fixed] object that used to be
seen along ray AG will be seen along ray AB, which is the next ray in line,
and again that object will appear stationary, because the position of AB will
be precisely the same as AG’s [used to be]. But if the object continues on to
any of the rays other than this one, it will appear to move. For if it [contin-
ues] to be viewed along [moving] ray AG, its [new] position will be in line
with AD, and it will appear to move in the same direction and at the same
[angular] velocity as the eye. If it is seen by any of the rays ahead of AG
[which will have moved to AD], it will appear to move in the same direction
as the eye] but faster. And if it is seen by any of the rays that lie between AB
and AG [which will have moved to AD and AG, respectively] it will appear
to move in the same direction [as the eye] but more slowly. Finally, if it is by
any of the rays behind [A]B [which will have moved to AG] it will appear to
move in the opposite direction.

The potential for misperception in such cases is extraordinarily high. Unless
we sense our own motion, we are bound to misperceive either the direction or
the speed of objects no matter whether they move in the frontal plane or the
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pl;mc of the axis. For that matter, we may even impute motion to the wrong

object, as Prolemy explains in Optics, 11, 132 (p. 124):

[2.16] If we sail in a boat along the shore during twilight, or if we move in
something other than a boat, and if we do not sense the motion of the thing
carrying us, then we judge the trees and topographical feature of the shore-
line to be moving. This illusion stems from the fact that, when the visual
rays are displaced [laterally], we infer thar the visible objects are moving
because of the displacement of the visual ray. Although the visible objects
are stationary, then, it is assumed that the apparent motion belongs to them.

Speed in relation to the distance and size of the moving object is also a factor
in how we perceive motion. Certain threshold conditions obviously apply: a
motion that is too fast or two slow under the given circumstances will not be

properly perceived, as Prolemy explains in Optics, 11, 82 (pp. 105-106):

[2.17] Since a motion that occurs in the smallest perceptible span of time
must be noticeable [in order to be perceived], we contend that if either of
these [conditions] is not met, it is impossible for there to be noticeable mo-
tion. For, if the distance over which the motion occurs is moderate and the
time within which it occurs is imperceptible (in fact, this often happens in
circular motions, as is evident in the case of a potter’s wheel or the wheels of
horse-drawn chariots when they are violently turning), the motion is not
apparent, because the [moving objects] return to their original positions in
less than the minimum perceptible time-span while the visual flux remains
fixed for what strikes the sense as a continuous time-span on the places that
the visible object occupies—and that is what characterizes [the visual per-
ception of ] objects that do not move. On the other hand, ifan unnoticeable
motion occurs during a brief perceptible time-span (as frequently happens
in the case of objects that move when there is a great distance between them
and viewers—e.g., in the case of the bodies that revolve in the heavens or
objects that [move] far off at sea), then [such objects] will not appear to
move. And since every magnitude and every place is perceived by means of
the distances that the visual flux senses, it is generally the case that, if the
place to which a moving object makes its passage is imperceptible, neither
the object nor its motion will be seen. And if this happens during a tiny
perceptible [period of] time, we perceive neither when it occurs nor how
long it took in terms of the [amount of] time we call “now.” Under these
circumstances, then, nothing will appear [to happen] during a continuous
span of time, but such objects will appear to move only if, by ignoring the
sense-data, we plot their motion in another way on the basis of their original
location.

As to relative distance, Ptolemy explains its effect in Oprics, 11, 100 (p. 111):

[2.18] Of objects that have the same speed, those that are closer appear to
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move faster. Among those objects whose cross-sections are equal, the ones
that are nearer to the viewpoint subtend a greater visual angle. Those things,
moreover, that mark out greater arcs in equal times appear to travel more
swiftly.

Finally, the case of relative size is addressed by Ptolemy in Optics, 11, 101 (pp.
111-112):

[2.19] Even though they are smaller, [certain objects], such as small boats
and small arrows, that are moving at the same rate as larger ones in fact
appear to move more rapidly. Indeed, putting it another way, objects that
traverse [incremental] spaces longer than themselves in several stages during
equal times are adjudged to move faster than those that traverse [incremen-
tal] spaces equal to their own length, since a small object measures a given
distance several times more than a large one. It therefore follows that, when
objects of unequal size travel at the same speed over given distances, the
smaller ones appear to move in more stages. Accordingly, then, since the
object passes over the distance apprehended by the visual flux in equal times
in more stages than [does the other object passing] over the same distance, it
appears to move faster.

It is thus because of relative size rather than actual speed that small animals,
such as mice, appear to dart, whereas larger (and often faster) animals, such as
dogs, appear to do no more than lope.

3. Binocular Vision

The analysis to this point has dealt with monocular vision. Surprisingly
enough, until Ptolemy’s time, binocular vision seems to have been all but

ignored, although it does figure obliquely in a series of six propositions (23-
28) in Euclid’s Optics. Here we will take propositions 23 and 26 (pp. 36-38
and 42-44) as examples:

[2.20] [PROPOSITION 23] However it is viewed by a single eye, a sphere
always appears smaller than a hemisphere, and the part of the sphere that is seen
looks like a circle.

Let there be a sphere with center A [in figure 2.18], and let B be the eye.
Then let AB be connected, and let a plane be extended along BA so that it
cuts a circle [through the sphere]. Let that circle be GDTI. Let circle GBD
be constructed upon diameter AB, and let GB, BD, AD, and AG be drawn.
Since AGB is a semicircle, then angle AGB is right, and so is ADB. Thus,
straight lines GB and BD are tangent [to circle GDTI]. Let GD be con-
nected, and let I'T be drawn through point A parallel to straight line GD.
The angles at K are therefore right. Now, if AB remains fixed [as an axis],
and triangle BGK is rotated about right angle K until it returns to its origi-
nal position, BG will touch the sphere at one particular point [throughout
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figure 2.18

the rotation], and [radius] KG will describe a circle. Accordingly, the cir-

cumference of a circle will be seen in the sphere. I say that what is seen is
smaller than a hemisphere. For, since [arc] IT forms a semicircle, [arc] GD
is smaller than a semicircle. And that defines the same part of the sphere
that is seen according to visual rays BG and BD. Hence, [section] GD is
smaller than a hemisphere, and it is seen according to visual rays BG and

BD.
[PROPOSITION 26] If the distance between the eyes is greater than the

sphere’s diameter, more than a hemisphere will be seen.
Let there be a sphere with center A [in figure 2.19], and let [great] circle
ETDI be circumscribed about center A. Let B and G be the eyes, and let the

B

ﬁgure 2.19

distance between eyes B and G be greater than the diameter of the sphere.
Let BG be connected. 1 say that more than a hemisphere will be seen. Let
visual rays BE and GD fall [on the sphere], and let them be extended be-
yond points E and D. They will then meet, insofar as the [sphere’s] diameter
is less than BG. Let them then meet at point Z. Thus, since ZE and ZD
reach the circle from a particular point —namely, Z—outside the circle, [arc]
DET is thus smaller than a semicircle. [Arc] EID is therefore larger than a
semicircle. But that is [the arc that is] seen by eyes B and G. Thus, more
than half the circle will be seen by B and G, and so the same amount of the
sphere will also be seen.
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The implication of this second theorem is clear: the larger image seen with
both eyes is a composite of the two smaller images apprehended by each eye.
But how are those two images fused into one coherent image? While Euclid
has nothing to say on this subject, Ptolemy essays an explanation in Optics, 11,

27-28 (pp. 82-83):

(2.21] Furthermore, every body appears at a single location to the [left or
right] sides of anyone who looks with one eye alone, and it is seen at a single
location by anyone looking with both eyes if he apprehends it with rays that
are correspondingly arranged—that is, rays that have an identical and equal
position within both visual cones in relation to their own axis. This happens
when the axes of both cones converge at a given [spot on a] visible object, as
is the case when we fix on visible objects with the normal glance that, by
nature, lets us scrutinize them carefully.

It seems, moreover, that nature has doubled our eyes so that we may see
more clearly and so that our vision may be regular and definite. We are
naturally disposed to turn our raised eyes unconsciously in various direc-
tions with a remarkable and accurate motion, until both axes converge on
the middle of a visible object, and both cones form a single base upon the
visible object they touch; and [that base] is composed of all the correspond-
ingly arranged rays [within the separate visual cones].

Under normal visual circumstances, then, the two eyes create a unified image
by causing the two visual axes to focus on a single point on the given visible

object, the result being that both visual cones share precisely the same base.

However, as Prolemy continues in Optics, 11, 29-37 (pp. 83-86), anomalous
visual effects can be created when the two axes are forced from their custom-
ary convergence—i.e., in the case of diplopia:

[2.22] But if we somehow force our sight from its accustomed focus and
shift it to another object than the one we wanted to see, and if the [new]
object toward which our sight is directed is somewhat narrower than the
distance between our eyes, and if the visual rays [that] fall together from our
eyes on that [new] object are not correspondingly arranged, then that same
object will be seen at two places. But when we close or cover either of our
eyes, then the image in one of the two locations will immediately disappear,
while the other will persist, [and the image that persists is] sometimes the
one directly in front of the covered eye and sometimes the one directly in
front of the other eye. This point will be easily understood if we try to
explain it in the following way:

Let a short ruler be set up, let two long, thin cylindrical pegs be stood
vertically upon it, and let the distance between the two pegs themselves and
between the pegs and the edges of the ruler be moderate. Let either edge of
the ruler be placed between the eyes so that the pegs lie in a straight line at

righi angles to the line connecting the eyes.
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Accordingly, if we focus our eyes on the nearer of the pegs, we will see it
as one, whereas we will see the other, which is farther away, doubled. And if
we close either eye, the peg that appears directly in front of that same eye
and that forms one of the doubled images will disappear. On the other
hand, if we focus our eyes on the farther of the pegs, we will see it as one and
will see the nearer one doubled. And if we close cither eye, the one of the
doubled pegs that appears to be opposite to this same eye and that forms one
of the two images will disappear.

That each of these phenomena occurs and is a logical consequence of
what we have proposed will be seen from the following diagram:

[EXPERIMENT II.1] Let points A and B [in figure 2.20] be the vertices
of the visual cones, and let B lie at the right eye and A at the left. Let two
pegs, G and D, be erected vertically upon A
line [GD, which is] perpendicular to AB,
and from each vertex of the two visual
cones let rays GA, GB, DA, and DB be
extended to the two pegs. Then let us first

focus on G, which is nearer.
AG and BG will therefore lie upon the

axes themselves. Of the remaining two
rays, however, AD will be one of the .lcf-t— figure 2.20
hand rays [in the cone whose vertex is at
A], and it is obvious that BD is one of the right-hand rays [in the cone
whose vertex is at B]. It necessarily follows, then, that G is seen at one
location, insofar as each of the axes corresponds with the other. On the
other hand, D must be seen at two locations, since AD is one of the left-
hand rays of the left eye, while ray BD is one of the right-hand rays of the
right eye. Thus, when we cover the left eye, the left-hand [member of the
doubled image] will disappear, and when we cover the right eye, the right-
hand [member] will disappear.

Now if we focus on D, the opposite will happen. This is demonstrated
from the fact that AD and BD will lie on the [visual] axes. Thus, D will be
seen as one, and G will be seen double, since AG happens to be one of the
right-hand rays of the left eye, while BG is one of the left-hand rays of the
right eye. So the opposite of what happened before will occur: that is, if we
cover the left eye, the image seen on the right-hand side by ray AG will
disappear, and if we cover the right eye, the image seen on the left-hand side
by ray BG will disappear.

[EXPERIMENT II.2] However, if our focus is such that both axes do

not converge on a visible object but are to all appearances parallel, like AG

and BD [in figure 2.21], then each of the pegs will appear double according

to the principles we have outlined.

For this to be manifest and demonstrable, the nearer peg, which lies at L,
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should be white, while the farther peg, which lies at M, should be black.
Points L and M will thus [each] be seen at two locations flanking the [actual]
locations of L and M. Accordingly, if we cover A G
the left eye, [both] pegs that [appear to] lie on
the right-hand side will disappear, whereas, if

we cover the right eye, [both] pegs that [ap-
pear to] lie on the left-hand side will disap-
pear. The reason is that, when rays AL, AM,
BL, and BM are extended, AL will certainly
lie farther to the right [of axis AG] than AM,
and BL will lie farther to the left [of axis BD]
than BM. Asa result, the right-hand [images of the] pegs will be seen by the

figure 2.21

left eye and the left-hand [images of the] cylinders by the right eye.

So far, Prolemy’s analysis of diplopia has involved point-objects, represented
by pegs. In the third book of the Optics he extends the analysis to lines, which

are intended to represent any object with true spatial dimensions. The follow-

ing example comes from Optics, 111, 26-32 (pp. 141-143):
[2.23] [EXAMPLE IIL.1] Let us first discuss the case of convergence in

which points A and B [in figure 2.22] represent the vertices of the two visual
cones. Let line AB be joined, and let it be

bisected at point G. Then, from that point E D Z

let GD be drawn perpendicular to line AB.
Let axes AD and BD converge at point
D, and let the visible object be placed at
D. Accordingly, this object will appear

single and in its actual location.

So, too, if we draw line EDZ through
point D perpendicular to GD, any object
placed on this line will appear single and

at its true location as long as it is aligned G
with point D.12

On the other hand, if line HTK is
drawn parallel to line EDZ while the two axes remain focused on D, an
object at point T will appear at the two locations represented by H and K.

figure 2.22

Moreover, two magnitudes placed at those two locations [H and K] will
appear at the three locations represented by points T, L, and M. At point T,
of course, both will be seen together at once, as if they constituted a single
object. They will be seen separately, however, insofar as H will be appear at
point L and K at point M, and each of the segments LT and TM will appear
equal to HK.13

But if we focus both axes upon point T, we will see point D at points E
and Z.14

That the number of these images proves to be as we have claimed can be
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determined experimentally by anyone using the ruler with two pegs stand-
ing on it. Whoever wants to ascertain their true locations will do so by
placing a finger on the visible object. For the finger actually touches the
object when it appears in its true location, whereas, when it does not, the
finger does not touch it but withdraws having encountered nothing there.

[THEOREM III.1] We have explained elsewhere the reason for the
anomaly that we just discussed, and we have demonstrated it in a variety of
ways when we dealt with objects that are seen at once with both eyes. In-
deed, those objects that are seen with correspondingly arranged rays appear
to lie in a single place even if there are actually two of them. However, if
they are seen by means of non-correspondingly arranged rays, such objects,
even if they are actually one object, appear to lie in two different locations.

To explain, let us join lines AE, AZ, ZB,
EB, TA, TB, BH, and AK in the preced-

ing diagram [as represented in figure 2.23].

= D Z

Accordingly each of the spots at E, D, and

Z will appear [respectively] in one location,
since AD and BD lie on the visual axes
themselves, and the rays that fall on E and
Z are correspondingly arranged, since AE
corresponds to BE, while AZ corresponds
to BZ. On the other hand, since AH and
BK lie on the visual axes, H and K will
appear [combined] at single location T, but
since BH and AK do not correspond, H
and K will be seen at points L and M. Fi-

figure 2.23

nally, because rays AT and BT do not correspond, point T will appear at the
two locations H and K. 13

To complete his analysis of binocular vision and diplopia, Ptolemy shows that
what ultimately governs image-displacement in diplopia is the relative dis-
tance between the particular visual axes of both cones and what he calls the

“common axis.” His point will be clear from the following excerpt from Op-

tics, 111, 35-40 (pp. 144-1406):

[2.24] Since all this is as we have claimed, it follows that nature equalizes
the disjunction between the two visual axes and joins them according to the
location of the visible object. Therefore, both of them fall upon the object
from the Apex, which lies between them and is where the vertices of the
visual cones ought to intersect.1¢ This Apex is equidistant from those axes,
which have a common sensibility. And this is what keeps the vision tracking
in a single direction midway berween both sides, because it is impossible for
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an object facing the visual axes to maintain the same orientation with re-
spect to each of them. In fact, an object directly in front.of both eyes is not
orthogonal to both axes. How, then, can we determine spatial disposition if
each of the axes is inclined to the other, unless, as we said, we do so on the
basis of some intermediate reference-line whose distance [from the axes] is
proportional [throughout]? Reason dictates that this reference-line be termed
the “common axis.”!”

In the case of objects seen in direct vision, we need to provide a general
determination of apparent location, and we should note that the displace-
ment of such locations from the actual objects varies with the distance of the
common axis from the proper visual axis. And this distance is [measured by]
the perpendicular dropped from the visible objects to the common axis.

[EXAMPLE I11.3] We must still consider whether the determining prin-

ciple we just adduced actually agrees with observation. Accordingly, let us

take the figure [for the first case in this series] as already drawn, so that each
of its defining features maintains the same order [as in figure 2.24]. Let each

of the lines AD and BD represent a visual e b 5

axis. We will therefore find that whatever
lies on line EDZ appears where it actually
is, while whatever lies on line HTK will be
encountered at places other than the one it

[actually] occupies.

Now it is clear that points E, D, and Z
will appear in the places they actually oc-
cupy, because the perpendicular dropped

from each of [the visual axes] to the com-

mon axis GD coincides with a single point. G

Since the displa_ccmcnr of the object’s ap- figure 2.24
parent location from its real location toward
a given side will depend on the distance between the common axis and the
proper axis, the visible objects themselves will be seen at their actual loca-
tions on account of the convergence of [all three] axes [at a single point]. It
has therefore been demonstrated that each of those objects appears at its true
location.

On the other hand, we have explained why H, T, and K do not appear in
their true locations: the proper axis of the visual cone emanating from the
eyeat A is AH, and its displacement, measured by the perpendicular dropped
to common axis GD, is HT, which is equal to line TK. Thus, the spot at
which point T will be seen will be point K. That the same thing also hap-
pens if we look from the eye at B will be demonstrated in precisely the same
way.

Likewise, if two objects are placed at H and K, and if LH and KM,
respectively, are equal to HT and TK, then the object placed at H will ap-
pear to lie at the two points T and L. On the one hand, it will be seen at
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point T from the eye at A along ray AH, because its perpendicular distance
[from common axis GD] is TH; on the other hand, it will be seen at point
L from the eye at B, because its distance is TK, the perpendicular linking the
common axis and the proper axis KB, and TK is equal to HL and lies in a
corresponding direction. This is the displacement of the apparent from the
true location of H as seen from the eye at B. By the same token, the appar-
ent location of the object placed at K will be at points T and M.

Perhaps the most glaring deficiency of Ptolemy’s analysis of binocular vision
has to do with his explanation of image-fusion. For if, as he supposes, this
fusion is due to the two cones’ sharing precisely the same base, the resulting
composite and its two individual constituents must be identical among them-
selves. Contrary to the clear implications of the Euclidean theorem provided
above, then, precisely the same image would be seen with two properly fo-
cused eyes as with one. As we shall see from the following excerpt, which is
drawn from On the Usefulness of the Parts (X, 12, pp. 494-95), Galen recog-
nized that the images would have to be disparate, at least as far as apparent
location is concerned:

(2.25] Concerning [the fact] that an object is not seen in the same place by
one eye as it is by the other, nor in the same place by both eyes together as it
is by either one of them but is seen in

one place by the right eye, in another A B

by the left, and in still another by both
eyes, this is what I must now say: Let
the right pupil be at A [in figure 2.25],
the left at B. Let the magnitude seen
be GD and let visual rays from each
pupil fall on G and on D, and when
they have so fallen, let them be pro-
duced [to background object TEIZ].
By the right pupil the magnitude GD

will be seen directly over against the

magnitude EZ, by the left pupil it will figure 2.25

be seen directly over against the mag-

nitude IT, but by both directly over against IE. Hence neither pupil will see
the object in the place where the other sees it, and both together will not see
it where either sees it separately.

Why did Prolemy fail to recognize what Galen saw so clearly? Perhaps he
simply failed to notice that the two eyes do not share precisely the same field
of vision. But a likelier reason can be found in the model of image-fusion to
which he was necessarily wedded. After all, to explain such fusion on strictly
mathematical grounds, he had no choice but to account for it in terms of the
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perfect symmetry of radial intersections at the visible surface. Otherwise, he
would have been driven to conclude (as we do now) that image-fusion is, at
bottom, psychologically rather than physically determined. Small wonder,
therefore, that Ptolemy failed to understand the proper function of binocular
vision in the perception of three-dimensional (rather than two-dimensional)

space, a perception that allows us to perform such mundane, yet incredibly

intricate tasks as catching a ball.
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NOTES

'In this case, Galen seems to be referring to the pupil itself, not the cornea.

*Unlike Prolemy, Galen apparently locates the ocular source of visual radiation in
the pupil rather than at the center of the eye itself.

’The Greek term for “visual ray” in this context is opsis. Elsewhere in the Optics,
however, Euclid uses the term ak#ss to denote the same thing. Since the two are more
or less interchangeable, I have made no effort to distinguish them in my translations.

4The rationale here is unclear. On the one hand, Ptolemy may simply mean that

since the visual radiation stops completely at the edge of the visual cone, rays that lie
closer to that edge necessarily lie closer to the absence of radiation it demarcates. He
could also be considering the radiation of visual flux from a central point in the eye to
be ideally spherical in nature. Accordingly, the visual cone marks out a section in that
sphere. Assuming that the radiation is uniform throughout the sphere, and assuming
that the base of the visual cone (in external objects) is essentially planar, then the
closer to the axis of the cone, the more concentrated the radiation, whereas the farther
from that axis, the more dispersed (i.e., the closer to “absence”) it is.

5Overall, the point Prolemy wants to make here is that objects are seen more
clearly the closer they are (within certain limits) to the eye and the more closely the
line of sight lies toward the axis of the visual cone. Note how vague Ptolemy’s formu-
lation of the relationship between distance and intensity in light-radiation is; the im-
plication, in fact, is that the relationship is a simple inverse one. It was only with
Kepler that the proper inverse-square relationship was finally specified (for light rather
than visual flux) in the early seventeenth century.

®The main point of this theorem, of course, is to explain the apparent conver-
gence of parallel lines when they are viewed along a parallel line of sight within the
same plane.

’Clearly, this theorem represents an alternative way of making the same point as
proposition 12 excerpted above in passage 2.7.

8The point here, upon which Prolemy elaborates later, is that the initial, primi-
tive apprehension of size-differences depends upon the size of the subtended visual
angles; distance and obliquity are ancillary variables that allow us to refine the dara
provided by those angles.

?According to Ptolemy, then, even if HK were longer than AB, it would never
appear to be longer to the viewer at E, because the judgment based on visual angle
takes precedence over that based on distance alone. Whar this means, of course, is
that size-perception cannot be sufficiently explained on geometrical grounds.

10Here we are faced with basically the same inconsistency as adverted to above.

'Note the obvious parallel between Ptolemy’s Governing Faculty and Galen’s
“ruling principle” in passage 1.24 above.

12This is because the object on line EDZ forms a common base for both visual
axes.
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BThe explanation for this set of claims is offered in the theorem that follows.

l4Since the two axial rays AT and BT converge on it, point T will be seen at the

center of the visual field. Point D will therefore appear to the left of that centerpoint
when seen with ray AD, which is inclined to the left of axial ray AT, whereas it will
appear to the right when seen with ray BD, which is inclined to the right of axial ray
BT.

In other words, as H shifts rightward to T for the eye at B, T shifts rightward to
K, while K shifts rightward to M. Conversely, for the eye at A, as K shifts leftward to
T, T shifts lefrward to H, while H shifts leftward to L.

16The Apex (principium) seems to be the source from which the two visual axes
are directed toward a common focus. That Prolemy located it at the optic chiasma is
certainly plausible but by no means unquestionable; see p. 37 above.

17This axis is therefore distinguished from what is termed the “proper axis” (i.e.,
the axis of the particular visual cone) in the next paragraph.







SECTION III

CATOPTRICS: ANALYSIS OF VISION BY REFLECTED RAYS

While Prolemy’s visual ray analysis of reflection yields many of the same con-
clusions as modern ray-analysis, there is one crucial difference. Modern ray-
theory assumes that, because reflection is objectively determined, its atten-
dant phenomena are more or less independent of subjective intervention—
hence the division between “real” and “virtual” images. For visual ray theo-
rists such an assumption is absurd, because it is the eye, not the object, that
ultimately causes vision. A//images generated by reflection are thus “virtual,”
the product of subjective mediation rather than of objective, physical circum-
stances. Furthermore, since vision results from contact between the visual
flux and visible objects, it follows that, whenever the flux reaches such objects
after reflection, they must be seen. As we shall see, this imperative forces
certain conclusions about image-formation that are both counterfactual and
logically untenable by modern lights.

Our examination of reflection will start with a brief look at the equal-
angles law and its theoretical and empirical justification. We will then turn to

the problem of multiple reflections from concave mirrors, examining in some

detail the conditions under which such reflections can occur and in what num-
bers. Next, we will address the basic principles determining image-location in
plane, convex, and concave mirrors, after which we will deal with certain prac-
tical issues of image-formation and image-distortion in all three types of mir-
ror. We will conclude with a cursory examination of visual effects produced
by composite mirrors, our cardinal source in this case being Hero of Alexandria’s
Catoptrics.

1. The Law of Equal Angles

Since the goal of ancient mathematical optics was to explain the visual
perception of physical space, the resulting theory of reflection was designed to
account for image-formation, and deformation, in mirrors—the three basic
mirrors chosen being plane, spherical convex, and spherical concave. The
main principle governing image-location is of course the law of equal angles,

79
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an early analysis of which is given in the passage below from proposition 1 of
y y g F g prop

Euclid’s Catoptrics (pp. 286-289):
[3.1] [PROPOSITION 1] Visual rays are reflected at equal angles by plane,

convex, and concave mirrors.

Let B [in figure 3.1] be the eye and AC a plane mirror. Let visual ray BK
emitted from the eye be reflected to D. I say that angle E = angle Z. Let
perpendiculars BC and DA be dropped. Therefore, BC : CK = DA : AK, for
this was postulated in the definitions.! Therefore, triangles BCK and DAK
are similar. Accordingly, angle E = angle Z, because similar triangles are

equiangular.

D G

ENN
K

ﬁgure 3.1 figure 3.2

Now let mirror AKC [in figure 3.2] be [spherical] convex, and let visual
ray BK be reflected to D. Isay that angle E + [horn] angle T = angle Z +
[horn] angle L. T have applied plane mirror NM [to convex mirror AKC].
Accordingly, angle E = angle Z. But

[horn] angle T = [horn] angle L, be- N T - M
cause MN is tangent. Thus, angle E + /
[horn] angle T = angle Z + [horn] angle \
| u C
D B

Once again, let mirror AKC [in fig-

ure 3.3] be [spherical] cmlcavc., and let figure 3.3
visual ray BK be reflected to D. I say

that angle E = angle Z, for, with the plane mirror [NM] applied, [horn]
angle T + angle E = [horn] angle L + angle Z. Therefore, the remaining
angles E and Z are equal.

Unlike Euclid, Hero of Alexandria attempted a theoretical justification of the
equal-angles law based on the dynamic model of radiation discussed earlier in

passage 2.6 above. In reflection, the ray/projectile is blocked by an imperme-
able surface that forces it to rebound. Thus, as Hero puts it in the third
chapter of the Catoptrics (pp. 322-24), “just as a rock hurled with grear force
against a compact body rebounds, . . . so also the rays sent forth by us at
enormous velocity, as has been shown, are reflected by compact bodies when
they strike them.” On the basis of this dynamic model, Hero offers the fol-
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lowing mathematical justification for the equal-angles law in chapters 4 and 5

of the Catoptrics (pp. 324-328):
(3.2] [CHAPTER 4] On the same grounds—that is, according to the speed

of incidence and reflection—we will demonstrate that reflections occur at
equal angles in plane and [spherical] convex mirrors. For again it is neces-
sary to reason according to the actual minimum lines. I say, then, that of all
incident and reflected rays reaching the same point from a plane or [spheri-
cal] convex mirror, those that form equal angles [with the reflecting surface]
are the shortest possible. Moreover, if such is the case, they are reflected at
equal angles according to an [underlying] rationale.

Accordingly, let AB [in figure 3.4]

be a plane mirror, point G the eye, and Z
D the visible [point-object]. Let GA be

the incident ray, and let it be connected

with [reflected ray] AD. And let the
angle EAG = angle BAD. Then let a
similar ray GB be the incident ray, and

let it be connected with [reflected ray] figure 3.4

BD. Isay that GA + AD < GB + BD.

For let GE be dropped from G perpendicular to AB, let GE and DA be
extended to Z, and let ZB be joined. Angle BAD = angle ZAE, because they
are vertical angles, and angle BAD = angle EAG [which therefore = ZAE].
But the angles at E are right, so ZA = AG. Furthermore, ZB = BG, so that
ZD < ZB + BD. But ZA = AG, and ZB = BG. Hence, GA + AD <GB +
BD.

[CHAPTER 5] Let AB [in figure 3.5]
be the surface of a [spherical] convex mir-
ror, let G be the eye, and let D be the vis-
ible [object-point]. Let GA and AD form

equal angles [with the reflecting surface],

and let GB and BD form unequal angles.
I say that GA + AD < GB + BD.

For let tangent EAZ be drawn. Accord-
ingly, [horn] angle HAE = [horn] angle
BAZ, and the remaining [angle] EAG =
ZAD. 1If, then, ZD is joined, it follows from the previous demonstration
that GA + AD < GZ + ZD. But GZ + ZD < GB + BD, so GA + AD < GB
+ BD.

figure 3.5

Taking an entirely different tack from Hero, Ptolemy attempts to establish the
equal-angles law inductively. His expression of the law is somewhart different
from Hero’s in that he uses the normal to the point of reflection as the refer-

ence-line for the angles, so that “each of the ray’s two branches joins at the
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point of reflection and . . . both form equal angles with the normal dropped to

that point” (Optics, 111, 3, p. 131). Ptolemy’s famous experimental confirma-
tion of the equal-angles law is to be found in Optics, 111, 8-11 (pp. 134-135):

[3.3] [EXPERIMENT III.1] Let a
round, bronze plaque of moderate size,
such as the one below [in figure 3.6], be
set up, and let A be its center. Let both
faces be planed down as carefully as pos-

sible, and let its edges be rounded and
polished. Then let a small circle be in-
scribed at centerpoint A on either of its
faces, and let it be BGDE. On this same
face let two diameters, BD and GE, be
inscribed to intersect at right angles; and
let each quarter circle be divided into 90 figure 3.6
degrees. Finally, let the two points B and
D be taken as centerpoints, and, using BA and DA as radii, let the two arcs
ZAH and TAK be inscribed.

Now let three thin, small, square, straight sheets of iron be formed. Let
one of them remain straight, and let one of its sides be polished so that it

appears as a clear mirror. Let the remaining two sheets be curved in such a
way that the convex surface of the one and the concave surface of the other
[taken together] form a circular section equal to circle BGDE, and let the
two [respective convex and concave] surfaces of these sheets be polished so
that they are made into two mirrors.

Let us cut arcs from each of the [above] two sheets, and let them be
represented by ZAH and TAK. Let line BA be drawn in white and AL in
some other color. Then let a small diopter be mounted upon AL, and let the
aforementioned plaque be disposed in such a way that [the sight-line of] the
diopter passes easily through point L and along line AL.2 Now let the afore-
mentioned plaque be placed with the side upon which the mirrors are [to be
mounted] facing up. Of these mirrors, let the plane one lie on GAE, the
convex one on ZAH, and the concave one on TAK. Finally, in the middle of
the upper edge of each of the mirrors let a pin be attached axially to the
mirror so as to keep it in place on point A.

Assume, then, that we view with either of our eyes through the diopter,
which is placed at point L on AL, and that we direct our line of sight toward
the axial pin of [each of] the mirrors. Accordingly, if we slide a small colored
marker [along arc TBK] on the plaque’s surface until it appears to us to lie
on the same line of sight with A, then point L, point A, and the image that
is seen in the three mirrors will appear [to lie] upon a single line [of sight].3

If, therefore, we mark the point at which the colored marker stands on the
plaque’s surface—i.e., the place from which the marker’s image appears in
those mirrors (e. g., the place represented by point M)—and if we draw out
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straight line AM, we will find that arc BM is always equal to arc BL. Since
that is the case, angle LAB will be equal to angle MAB, and line BD will be
normal to all of those mirrors. Line AL [thus] delineates the [branch of the]
visual ray incident to the mirror’s surface from the eye, whereas line AM
delineates the [branch of the] visual ray reflected from the mirror’s surface to
the visible object.

As we will see later, since Ptolemy bases his analysis of reflection from convex
and concave mirrors on cylindrical sections, his conclusions about reflection
from spherical mirrors are generalized from the simpler case of cylindrical
MIrTors.

2. Multiple Reflections and Multiple Images

Plane and Convex Mirrors: With the equal-angles law established, the next

thing to determine is whether more than one ray-couple emanating from the

same center of sight can reflect to the same object from a given center of sight.
In other words, is it possible for the same object to project more than one
image in a mirror? Excerpted below, proposition 4 of the Euclidean Cazoptrics
(pp. 292-294) addresses this issue for plane and convex mirrors:

[3.4] [PROPOSITION 4] Visual rays that are reflected from plane and [spheri-
cal] convex mirrors will not intersect, nor will they be parallel.

Let AC [in figure 3.7] be a plane mirror, B the eye, and BCD and BAE
reflected ray-couples. I say that CD and AE are not parallel, nor do they
intersect in the direction of D and E.

Now angle Z = angle T, and angle K = angle M. Butangle Z > anglc K,
because it is an exterior angle of triangle BAC. Likewise, angle T > angle M.
Therefore, CD is not parallel to straight line AE, nor does it intersect it in
the direction of E and D.4

figure 3.7 figure 3.8

This time let there be a convex mirror AZC [in figure 3.8], let B be the
eye, and let BZD and BHE be reflecting ray-couples. Isay that ZD and EH
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are not parallel, nor do they intersect in the direction of E and D,

Let straight line HZ be drawn and extended out on both sides. Angle K
+ angle T = angle N because the ray is reflected at equal angles. Thus, angle
N +angle AZH > angle K. Moreover, angle K > angle CHZ + angle X, while
angle N + angle X > angle O + angle P, for angle X = angle O + angle P.
Therefore, angle N + angle AZH > angle O + angle P. A fortiori, then, angle
N + angle AZH > angle O. Consequently, straight lines ZD and HE will

neither meet nor be parallel.

Although the issue of multiple images is not explicitly addressed in this propo-
sition, it nonetheless provides a clear focus. Since the separate reflected rays
cannot meet, they will never reach the same object-point. Consequently, mul-
tiple images of that object-point cannot possibly be seen from the same view-
point. Presumably, the additional restriction against parallelism is meant to
cover cases of objects lying so far away from the mirror that, in reaching them,
the reflected rays become virtually parallel.

Concave Mirrors: Having shown that multiple images are impossible in plane

and convex mirrors, Euclid turns to the analysis of concave mirrors in propo-

sition 6 of the Catoptrics (pp. 296-298):

[3.5] [PROPOSITION 6] In the case of [spherical] concave mirrors, if you
place the eye between the center [of curvature] and the surface, then the reflected
visual rays will sometimes meet and sometimes not.

Let AC [in figure 3.9] be a [spherical] concave mirror, D the centerpoint,
and let the eye, B, be located between the centerpoint and the [reflecting]
surface. Let visual rays BA and BC be reflected to I and Z [respectively], and
let rays AT and CK be extended to the [con-
tinuation of the] mirror’s surface. Accord-
ingly, AT is either longer than, equal to, or
shorter than CK.

Now if visual ray AT = visual ray CK, then
arc ACT = arc CTK. Also, since angle M =
angle X—because angles of equal arcs are
equal to each other—then angle M + [angle]
L = [angle] N + [angle] X according to [the
equal-angles relationship in] reflection. Con-
sequently, remaining angle O = [remaining
;1.[1glc] P, so that angle R > angle O.. L‘.\'Uw, Biute 3.9
since angle R > angle P, insofar as it is an
exterior angle [of triangle BCR], and since [angle] P = [angle] O, then angle
R > [angle] O. Let common angle ORZ be added [to angle O]. It follows,
then, that CZ and Al will intersect in the direction of I and Z.5

The same will also hold if visual ray AT > visual ray CK. For angle L +
angle M > [angle] N + [angle] X,6 [angle] P > [angle] O, and [angle] R >
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[angle] O.

If AT < CK, then it follows that angle O > [angle] P. But [angle] R >
[angle] P. Hence, nothing prevents [angle] R from being at least equal to
[angle] O or less than it, in which case Al and CZ may not intersect.

As with proposition 4, so with this one, the issue of multiple reflections is not
explicitly addressed but nonetheless provides the focus. That separate reflected
rays can intersect at a given (‘)bject—p()int therefore demonstrates that the same
point can yield at least two images under certain conditions.

Repeated in both Hero’s Catoptrics and Prolemy’s Optics, these theorems
demonstrate that multiple images can be formed in spherical concave mirrors

only. Suffice it to say, then, that the problem of image-formation and image-

location for these particular mirrors is far more complt‘x than it is for plane
and spherical convex mirrors. In fact, as we shall now see, depending on
where the object and eye are placed with respect to the reflecting surface, there
is virtually no limit to the number of reflections that can occur in spherical
concave miIrrors.

Only three cases of multiple reflections are treated in the Euclidean
Catoptrics and one in Hero’s Catoprrics. 'The most general case, which is
common to both Euclid and Hero, is covered in proposition 5 of the Euclid-

ean Catoptrics (pp. 294-296):

[3.6] [PROPOSITION 5] In concave mirrors, if you place the eye at the center
/{gfrurrfﬂturf’f. on the [re_‘ﬂc’rringf Jurf{}ce, or !)ey(md the jizfjffzce (i. (-4 between the
center [of curvature] and the surface), the reflected rays will intersect.

Let ACD [in figure 3.10] be the concave mirror, and let B be the
centerpoint of the [generating] sphere. Let the eye be placed at B, and let
rays BA, BC, and BD strike the [reflecting] surface. Therefore, the angles
formed at points A, D, and C are equal, for they lie on a semicircle. Thus,
the reflected rays BA, BC, and BD will be diverted back upon themselves,
for this point has been demonstrated [previously, in proposition 2]. They

will therefore intersect at B.”

C

B

figure 3.10 figure 3.11

Again, let ACB [in figure 3.11] be a concave mirror, and let the eye, B, be
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placed on its surface. From B let reflected rays BC and BA strike at points D
and E. Since arc ACB > arc BC, angle Z > angle T. Also, since [angle] I >
angle K, [angle] Z + [angle] I > [angle] T + [angle] K. Since the remaining
[angle] L < [angle] M, it is even smaller in relation to angle N. Thus, CE
and AD will intersect at X. If the eye should fall beyond the surface, the

same demonstration will hold, as in the following proposition.8

The remaining two cases are covered in proposition 6, which we have already
examined in passage 3.5 above. According to the conditions set forth there,
multiple images will invariably be seen when chord AT, containing incident
ray AB, is either equal to or greater than chord CK, containing incident ray
BC, because in both cases the reflected rays Al and CZ will intersect ata single
object-point. If, however, AT < CK, and if the difference is great enough, the
reflected rays will not intersect, in which case multiple images cannot be seen.
Whereas the Euclidean treatment of multiple images is sketchy at best,
Ptolemy devotes considerable attention to the issue. As might be expected,
his treatment is both more comprehensive and more systematic, involving an
extensive case-by-case analysis of image-formation according to various dispo-
sitions of eye and object in relation to the reflecting surface. Accordingly, he
asserts in Optics, IV, 2 (p. 175), “it is possible for one and the same visual ray
to be reflected from a concave mirror [in several ways]: sometimes from all
points on the mirror, sometimes from all points on one of its great circles,
sometimes from three points, sometimes from two only, or sometimes from
none.” To illustrate Prolemy’s case-by-case approach to the problem, we will
look at a selection of representative theorems. The first and simplest case is
one with which we are already familiar: reflection to the centerpoint of the
concave mirror. Prolemy deals with this in Optics, IV, 3-5 (pp. 175-176):

(3.7] [THEOREM IV.1] Accordingly, we say that reflection from the entire
surface of the mirror occurs as follows:

Let ABG [in figure 3.12] represent the arc of a circle lying on a concave
mirror whose center is D. Let BD be drawn normal to the mirror. Let D be
the center of sight and E the midpoint
[where the axis of the visual cone inter-
sects the surface] of the cornea. In this
plane, on centerpoint D, let arc ZEH
be drawn through the corneal surface.

Then, let the two lines AZD and GHD
be drawn. They will therefore be per-
pendicular to the mirror. Hence, all rays

emanating from point D to arc ABG figure 3.12
are reflected back on themselves to point

D. Moreover, they are apprehended and sensed according to the spots at
which rays like DA, DB, and DG strike [as they are] projected from the eye,
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and they are actually apprehended and sensed according to points E, Z, and
H.

The same happens for all parts of the mirror that are sensed by the base of
the visual cone. For if we assume that surface ADG forms a cone when it is
rotated about axis BD, then what will appear in the whole surface of the
mirror will be the image of the cornea, and it will appear continuous upon
the entire surface. For the rays that are projected from point D to the mirror’s
surface and the normals that are reflected back upon them from the mirror
meet at a point common to them all as well as to the reflecting surface, and
this surface is the one that defines the locations of the image.

Although this may appear to be a mere rehearsal of the Euclidean demonstra-
tion in the first part of proposition 5 [passage 3.6] above, it is not. For one
thing, Ptolemy extends the analysis beyond the great circle to the entire sur-
face. For another, he is not content to represent the eye by a point but, in-
stead, tailors his account to the fact that the entire ocular globe is involved. As
a result, we can infer that he understood the eye to be a true sphere at whose
precise centerpoint lies the source of visual flux. As far as visual sensation
itself is concerned, finally, Ptolemy seems to have located it at the corneal
surface, where the reflected rays “are actually apprehended and sensed accord-

ing to points E, Z, and H” on the cornea. It is thus plausible to suppose that
Ptolemy had emphasis in mind as the fundamental mechanism of visual sensa-

tion.

The second category of analysis for Ptolemy is defined by two conditions:
the eye and the object must both lie upon a diameter of the sphere that defines
the reflecting surface, and they must lie on either side of the center of curva-

ture. Accordingly, our first example is from Optics, IV, 6-8 (pp. 176-177):
[3.8] [THEOREM IV.2] Reflection from [a single] circle on the circumfer-

ence of such a mirror generally takes place according to the following ex-
ample:

Let circle ABGD [in figure 3.13] be
drawn with diameter BED. Let two points
Z and H be marked upon BED on each
side of centerpoint E, and let EZ = EH.
Then, through point E, let diameter AEG
pass orthogonally to diameter BED. Fi-
nally, let lines ZA and AH be drawn.

Thus, since ZE = EH, while line AE is
common, and since the angles at E are
right, angle ZAE = angle EAH. Hence, D
lines AH and AZ will be reflected at equal figure 3.13

angles. Likewise, too, a reflection at equal
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angles occurs at point G. Now if we assume ABG to be the arc of a circle
lying on a concave mirror, and if we suppose that surface AZH revolves
about diameter BD, then points A and G certainly describe a circle on the
mirror, and all the rays projected to that circle are reflected in the same way

as they are along ZAH?

Having thus analyzed the circumstances under which reflection takes place
along a great circle of the sphere, Ptolemy turns to the analysis of reflection
from a lesser circle parallel to that great circle. The following example is from

Optics, IV, 11-13 (pp. 177-179):

[3.9] [THEOREM IV.5] We wish to demonstrate that on the arc between
points A and B there is a point from which reflection takes place at equal
angles. This demonstration is as follows:

Suppose [in figure 3.14] that the amount by which ZE exceeds EH (i.c.,
ZT):EH =7ZH : KH, KH being longer than HB. Let line KL be drawn
tangent to circle ABG at point L, and let lines LZ and LH be connected.
We therefore assert that HLZ reflects at equal angles.

figure 3.14

Let line MEN pass through point E parallel to line KL, and let it meet
the extension of line LH at N. Then let [normal] EL be joined, and cut off
ET equal to EH. Therefore, since ZH : KH = [ZT : EH =] ZT : ET, then,
by composition, KZ [i.e., KH + ZH) : KH = ZE [i.e., ZT + ET] : ET, while
ET = EH. By alternation, KH: EH = KZ : ZE. ButKH : EH = KL : EN,10
and KZ : EZ = KL : EM. Thus, the ratio of lines EM and EN to one another
is one of identity; so they are equal.!! Moreover, line LE is common, and
both angles of the two triangles [ELN and ELM] at E are right, because
angle KLE is right. Hence, angles ELN and ELM will be equal.

Ptolemy then concludes his analysis of the second category (i.e., the case in

which eye and object lie on the diameter) with the following proof from Op-
tics, IV, 22-25 (pp. 181-182):

[3.10] [THEOREM IV.9] Accordingly, it will be shown as follows that, if

reflection takes place at equal angles from some given point on a semicircle,
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it is impossible for it to take place from any other point on that semicircle:
if it is possible, let the reflecting ray-couples be ZL, LH and ZS, SH [in
figure 3.15], and let normals EL and ES be joined. Therefore, since both
angles [ZLH and ZSH] are bisected, ZL :
LH =Z7E: EH and ZS : SH = ZE : EH, so
that ZL : LH = ZS : SH. By alternation, ZS
: ZL = SH : LH, but line ZS < line ZL!?
Therefore, line SH < LH, which is false.
What we have said will also be demon-
strated in like manner for any other semi-
circle, because, if the ray is reflected at equal

angles from, say, point L, and if we assume
that point B lies on a circular arc within the
concave mirror and that surface HZL is re-
volved about diameter DB [as axis], then figure 3.15

from every point on the circle formed by

the circumscription of point L, the ray-couple connecting points Z and H
will reflect at equal angles.

Ptolemy’s third category of analysis covers those cases in which the eye and

object lie upon a chord located between the center of curvature and the sur-

face from which the reflection takes place. In this case, eye and object are
located on either side of the radius orthogonal to the chord. The following
example is from Optics, IV, 26-30 and 34-35 (pp. 182-183 and 184-185):

(3.11] [THEOREM IV.10] After this, however, we ought to investigate the
cases in which the appearances are created by three reflections from one arc
while the eye lies at predetermined points.

AL

cM

figure 3.16

Let ABG [in figure 3.16] be a circle with center D, and let AEG be
drawn. Then let perpendicular DEB be drawn, and let arc ABG be marked
off on a concave mirror. Let there be two points Z and H on line AEG such




PTOLEMY AND ANCIENT OPTICS

that circle TDK, which passes through those two points as well as D, cuts
both arcs AB and BG. Finally, let lines DZL and DHM be drawn, and let
ZE first be supposed equal to EH. We say, then, that reflection at equal
angles [between Z and H] takes place at three points: i.e., at point B, point
T, and point K.

Let rays ZB and BH, ZT and TH, and ZK and KH be the reflecting
couples, then, and let normals TD and KD be drawn. Therefore, since ZE
= EH, and line EB is common, while the angles at E are right, angle EBZ =
angle EBH. So too, angle ZTD = angle DTH, and angle DKZ = angle
DKH, because arc DZ = arc DH, and points T and K lie on the circumfer-
ence of the circle.13

[THEOREM IV.11] We say, however, than no other ray is reflected [at
equal angles] from any point lying between points L and M on arc LM. For,
since the angles at points T and K on arc KDT are subtended by [equal] arcs
ZD and DH, there is a reflection [at equal angles] from these two points.
Moreover, the ray to B is reflected [at equal angles], because line BD bisects
line AG [and thus line ZH, which subtends angle ZBH]. On the other
hand, no rays are reflected from any points other than these three on the arc
between L and M, because they lie neither on arc DTK nor on its center.

It is evident, moreover, that those rays that are [supposedly] reflected
between [arcs] AL or GM do not do so at equal angles, because they do not
encompass centerpoint D.14

[THEOREM IV.13] Reflection [at
equal angles] occurs at three places, even if
line EZ is longer than line EH.

Let the circle passing through points D,
Z, and H [in figure 3.17] cut each of the
arcs LB and BM [such that EZ > EH]. Ac-

cordingly, as we have just shown, no ray

will reflect from points T and K, because
arc DZ > arc DH. Nor will it reflect from
point B, since ZE > EH, and the two angles
at E are right. However, in lieu of the two
reflections that took place from points B

and K, two rays will reflect from the arc
that lies between points B and K. More-
over, in lieu of the reflection from point T,

ﬁg11rc 3.17

a ray will reflect between points L and T.

Three reflections is in fact the maximum that can occur under the conditions

of this second category of analysis. As the following passage from Optics, 1V,
39, 41-45,and 101-102 (pp. 185-188 and 203) illustrates, in certain circum-

stances two or fewer reflections will result:
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[3.12] [THEOREM IV.15] In order not to
prolong this discussion, we ought to stipu-
late chat, if circle ZDH does not cut some
arc other than BM, and if point Z passes
through point A, as in the present figure
[3.18], or beyond it [along line EA], then
the reflections that occurred at equal angles
from points B and K [in theorem V.10, pas-
sage 3.11, above] will occur only from two

places between B and K—as long as we ex-
clude arc TL—because the whole of arc AB
will lie within circle DZH.!> In the same
way it will be demonstrated that none of figure 3.18
the other rays reflects at equal angles.

[THEOREM IV.17] Nearly the same thing that we have shown also
happens when circle ZHD does not cut circle ABG, and when point E lies
between points Z and H. For in that case only one reflection takes place at
equal angles.

Let circle DZH [in figure 3.19] not cut circle ABG, and, for a start, let
ZE = EH.

It is obvious from what we have shown that there will be a reflection at
equal angles from point B. Furthermore, it will be evident that there is no

B

Z&
D
tigure 3.19

reflection from arcs AL and GM. Now, it will be demonstrated as follows
that it is impossible for a reflection [at equal angles] to occur from the arc
that lies between L and B or the one that lies between B and M.

If such a reflection is possible, then let it take place according to ZT and
TH. After [normal-]line DKNT is drawn, lines ZN and NH will be joined.
Since angle ZND = angle DNH, insofar as arc DZ = arc DH, it follows that
angle ZNT = angle HNT. But angle ZTN was [supposed to be] equal to
angle DTH. Therefore, triangles ZNT and THN are equiangular, and line
TN is common. Consequently, ZT = TH, so it follows that ZK = KH. This

entails a longer [line] being equal to a shorter [line], which is impossible.
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The same thing will also be demonstrated if we assume the reflection to
occur between points L and B.

[THEOREM 1V.28] Now, let ABG [in figure 3.20] be a circle with
centerpoint D, let line AG be drawn, and let DEB be dropped perpendicu-
lar to it. Let arc ABG be the segment of a circle inscribed in a concave
mirror. Then, of the two points [eye and
object] under discussion in the preceding
figures, let one be placed at point A and
the other at point E. We say, then, that

there is no reflection at equal angles between
them from arc ABG.

It is clear that no such reflection occurs
from arc BG, since it is impossible for the figure 3.20
rays reflected between the aforesaid [two
points] to encompass point D. From arc AB, as well, it is obvious that no
reflection at equal angles can occur. For if such a reflection could occur, for
instance, along AZ and ZE, then arc HGZ would be equal to arc AZ, which
is false, because arc HGZ is much larger than arc ZA, given that arcs AB and
BG are equal.

The final category of analysis deals with the case in which the eye and the
object lie on a chord that is located beyond the center of curvature. Our

example is taken from Optics, IV, 84-96 (pp. 199-201):
[3.13] [THEOREM IV.25] We must also demonstrate that, on the whole,

when the center of the sphere lies between the mirror itself and the line

joining the eye and the visible object, reflection at equal angles takes place
from only one point.

[CASE 1]

Let ABG [figure 3.21] be the arc of a circle lying on a concave mirror
with center D, and let normal BDE be drawn with line HEZ cutting it at
right angles. Let one of the [end]points [of the reflecting ray-couple] be Z
and the other H. First, let EZ = EH. We
say, then, that between points Z and H
there is no reflection at equal angles except
from point B.

Let BZ and BH be joined. Accordingly,
since lines EB and EZ are equal to lines BE
and EH, respectively, and since the angles
at E are right, the two triangles will be equi-
angular. Thus, angle BZE = angle BHE
and angle ZBE = angle HBE.

If it is possible, let another ray-couple,
such as ZTH, reflect at equal angles, and let normal TDK be drawn. There-
fore, since line KT bisects angle ZTH, then KH : KZ = TH : TZ.'6 But

figure 3.21
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KH > KZ, so TH > TZ. Thus, angle TZH > angle THZ, and so angle
BZH will be even-greater than angle BHZ, which cannot possibly be the
case, since we have just shown them to be equal. Consequently, TZ and
TH do not reflect at equal angles.

What we have established will also be evident if we assume some other
line.

[CASE 2]

Let a diagram [figure 3.22] be constructed similar to the previous one,
but let EH > EZ. Then let lines ZDT and HDK be drawn, let line ZH be
bisected at point L, and let angle ZDH be bisected by line DM. Let EZ =
EC, and let lines LDN, MDS, and CDU
be drawn. We say, then, that the reflec- NSB
tion at equal angles of the ray-couple join-
ing Z to H will occur between points N
and S.

But from arc KA and arc GT no ray-
couple will reflect at equal angles, for the
ray-couple reflected from either of them
does not encompass centerpoint D.17

So let us demonstrate first that it does

not reflect from point S. Ifit could, let it

reflect along ZSH. Therefore, since angle figure 3.22

ZDM = angle HDM, angle SDZ = angle

SDH. However, angle ZSD was [supposed] equal to angle DSH. There-
fore, triangles ZDS and HDS will be equiangular, with line DS common.
Accordingly, line ZD = line DH, so angle DZH = angle ZHD. Bur angle
DZH = angle DCZ, because sides CE and EZ are equal, as are the angles at
E in triangles CED and EZD, and line ED is common. Consequently, in
triangle CDH interior angle ZHD = exterior angle DCZ, which is false.

If, moreover, we assume a reflection [at equal angles] from some point
between S and T, the result becomes even more absurd. For in that case ZD
ought to be longer than DH. Also, line MH, which is the longer, will be
shorter than ZM, which is the shorter, and interior angle DHZ > angle
DZH, which is equal to exterior angle DCZ, all of which is impossible.

Again, assuming that it is possible, let the reflection occur along ZNH.
Thus, since line ZL = line LH, then ZN = NH, and angle NZH = angle
NHZ. It therefore follows that angle NLZ = supplementary angle NLH,
which is impossible.

This will be even more absurd, however, if we assume the reflection [at
equal angles] to occur between K and N. Such an assu mption leads to the
conclusion that a line shorter than ZN is longer than a line longer than NH,
while angle NLZ, which is more acute than angle NLH is larger than an

angle that is more obtuse than angle NLH.!8

93
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[CASE 3]

But if there is a reflection at equal angles, it will certainly fall between
points § and N, in which case nothing results that is contrary to what we
have proposed. That only one ray-couple reflects at equal angles from this
arc will be obvious, as we shall now explain. But in order not to confuse the
figure, let us assume that the two points S and N lie on the arc from which
we have claimed that it is possible for reflection [at equal angles] to occur.
Moreover, assuming that it is possible, let the two ray-couples [ZSH and
ZNH] be reflected at equal angles from those two points.

Accordingly, ZS : SH = ZM : MH, and ZN : NH = ZL : LH. But ZL:
LH > ZM : MH, so ZN : NH > ZS : SH. By alternation, ZN : ZS > NH :
SH, but NH > SH, because it is nearer to centerpoint D. Therefore, ZN
will be much longer than ZS, which is impossible, since ZS > ZN, insofar as
it is nearer the centerpoint.

But if we transpose N to point U and S to a position between points S
and B, the arc from which the reflection occurs is defined by the line joining
the centerpoint and the midpoint of the line joining the two points [Z and
H] along with the line that bisects the angle subtended by this line [ZH].
And there is only one ray that reflects at equal angles from these points.

Although Prolemy has been criticized by modern commentators for the cum-
brousness of his case-by-case approach to reflection from concave mirrors, we
should bear in mind that, compared to Euclid’s extraordinarily spotty treat-
ment, Ptolemy’s is truly remarkable for its comprehensiveness as well as its
structural integrity. Bear in mind, first, that Prolemy’s analysis proceeds in
perfectly logical sequence according to the relative placement of object and
eye with respect to the center of curvature. Specific cases of reflection depend
upon whether: 1) eye and object coincide at the center of curvature itself; 2)
eye and object lie on a diameter at various points with respect to the center of
curvature; 3) eye and object lie on a chord between the center of curvature and
the surface of reflection; 4) eye and object lie on a chord beyond the center of
curvature. Furthermore, each of these cases is differentiated by subcase ac-
cording to the number of reflections that can occur. Overall, then, Prolemy’s
approach is as determinate as it is sensible.

3. The Principles of Image-Location

Although the equal-angles relationship between the angles of incidence
and reflection is the most fundamental determinant of image-location, there
are three other principles involved. Ptolemy sums them up in Optics, 111, 3-5

(pp. 131-132):

[3.14] The first of these principles states that objects seen in mirrors appear
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along the extension of the [incident] visual ray that reaches them through
reflection, the resulting line-of-sight being determined by the placement of
the pupil with respect to the mirror. The second principle asserts that par-
ticular spots [on a visible object] seen in mirrors appear on the perpendicu-
lar dropped from the visible object to the mirror’s surface and passing through
it [i.e., the cathetus of reflection] . . . A line normal to the surface of a sphere
is commonly defined as one that forms right angles with all the tangents to
the sphere at the common point on its surface [where the perpendicular is
dropped]. Hence, it necessarily follows that all normals to the surface of
spheres, when they are extended beyond, pass through the sphere’s center.!?

The implications of the principles just articulated will become evident
according to observed facts, as we shall explain. For in all mirrors we find
that, if we mark on the surface of any of them the spots where visible objects
appear and then cover them, the image of the visible object will no longer
appear. But afterward, if we uncover one spot after another and look toward
the areas revealed, the designated spots will appear together with the image
of the visible object along the line of sight projected from the vertex of the
visual cone.2? Also, if we stand long, straight objects at right angles to the
surfaces of mirrors, and if the distance is moderate, their images will appear
[to lie] perfectly in line with those objects [as they] are properly viewed
outside the mirror.2!

From both these instances it follows that a visible object must appear in
the mirror at the point where the [extension of the incident] visual ray and
the normal dropped from the visible object to the [surface of the] mirror
intersect. [From this the third principle follows: namely, that] since they
intersect, these two lines must lie in the same surface, and this same surface
that contains them must be perpendicular to the mirror’s surface, because
one of the [contained] lines is perpendicular to the mirror’s surface. Also,
the [branch of the whole] visual ray that is reflected to the visible object will
be in the surface just described. Finally, the normal dropped to the point of
reflection on the mirror’s surface must be the common section of all the
various surfaces [of reflection] defined by the reflection of visual rays [at that
particular point].

The four principles enunciated above can be easily understood by reference to
figure 3.23: RI is the extension of incident ray ER along which the image is
seen (principle 1); Ol is the normal (i.e., cathetus of reflection) dropped from
the object-point to the mirror’s surface (principle 2); and EOI forms a single
surface (the “surface of reflection”) containing all the defining rays and normals
(principle 3). Note, however, that in the case of convex or concave mirrors,
the cathetus of reflection OI passes through the center of curvature and is

perpendicular to the plane surface tangent to the surface of reflection at the

point where it intersects that latter surface.
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figure 3.23 figure 3.24

For the Euclidean and Heronian versions of the first two principles—Iless
elegantly articulated than Prolemy’s—we turn to proposition 16 of the Eu-
clidean Caroptrics (p. 312) and chapter 6 of Hero’s Catoptrics (p. 330) where
the principles are laid down for plane mirrors:

[3.15] [PROPOSITION 16] Everything that is seen in plane mirrors is seen
along the straight perpendicular line dropped from the visible object.

Let CD [in figure 3.24] be a plane mirror, B the eye, and A the visible
object. From that object let perpendicular AC be dropped to the mirror.
Therefore, since it has been adduced from experience that A is not seen to
occupy point C,22 A will be seen along the extension of straight line AC.
But it is also seen along the extension of visual ray BD, so it is seen at E. For
we have supposed that a straight line is one whose intermediate points lie in
the way of the endpoints,?3 so that AE and BE are rectilinear.

([CHAPTER 6] In plane mirrors there is a spot where, when it is blocked,

an image will no longer be seen.

Let AG [in figure 3.25] be a plane mirror A D

or an extension of its surface-plane. Let B be
the eye and D the visible object, and let
normals AD and BG be dropped to the mir-
ror. Then let AG be cut at H such that AD :
BG = AH : HG. I say, then; that when point
H is blocked, D is no longer seen.

Let BH and HD be drawn. Hence, ac-
cording to the proportionality [of sides given
above], triangles [HAD and HGB] are simi-
lar. Angle E = angle Z, then, so D will appear

through H. Hence, if that spot is blocked with
wax or some other agent, D will no longer be

seen. If, however, one removes the blockage figure 3.25
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at H, the image will appear in the mirror. For all rays incident upon a mirror
will be reflected at equal angles.

Finally, in the Euclidean Catoptrics, the principles underlying image-location

for spherical convex and spherical concave mirrors are provided in proposi-
P P

tions 17 and 18 (pp. 312-14):

[3.16] [PROPOSITION 17] Everything that is seen in [spherical] convex
mirrors is seen along the straight line dropped from the visible object to the center
of the sphere [i.c., the center of curvature].

Let CD [in figure 3.26] be a [spherical] convex mirror, B the eye, and
BD the visual ray reflected to the visible object A . Let Z be the center of the
sphere, let [cathetus] AZ be connected, and let visual ray BD be extended to
E. Therefore, since it has been adduced from experience that A is not seen
to occupy point C,24 A will be seen along the extension of straight line AC,
where visual ray BD and [cathetus] AZ intersect: i.e., at point E, just as is
the case in plane mirrors.

C

figure 3.26 figure 3.27

[PROPOSITION 18] Everything that is seen in [spherical] concave mir-
rors is seen along the straight line dropped from the visible object to the center of
the sphere [i.e., the center of curvature].

Let CD [in figure 3.27] be a [spherical] concave mirror and BC the vi-
sual ray reflected to the visible object A . Let E be the center of the sphere,
and let a straight line be drawn from A to E and extended. Therefore, since
it has been adduced from experience that A is not seen to occupy point D
but must necessarily be seen along the extension of [cathetus] AE, it will be
seen at the point where [cathetus] AD and viusal ray BC intersect: i.e., at
point Z.

In the case of plane and convex mirrors, all of the images generated are “vir-
tual,” insofar as they appear behind the mirror, where the intersection of the
cathetus of reflection and the extension of the incident ray must always lie. In
the case of concave mirrors, however, the situation is considerably more com-
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plex, for, depending on the relative position of the eye and object, the inter-
section that defines the image can: (1) be indeterminate (i.e., the incident ray

and cathetus will never meet); (2) lie behind the mirror (creating a “virtual”

»

image), (3) lie between the mirror and the center of sight (creating a “real
image), (4) lie at the center of sight itself, or (5) lie beyond the center of sight.
Cases 1, 2, and 5 are discussed by Ptolemy in Optics, IV, 63-65 (pp. 192-193):

[3.17] [THEOREM IV.22] In the case where the line-segment reflected
from the mirror to the visible object is equal to the line connecting the
visible object and the center of the sphere, it necessarily follows that the
[incident] ray-segment emanating from the eye to the mirror and the nor-
mal dropped from the visible object to the mirror are parallel [case 1 above].
But in the case where the two aforesaid lines are unequal, if the line connect-
ing the center of the sphere and the visible object is longer than the reflected
line-segment, then the intersection-point we have cited will lie behind the
mirror [case 2 above]. If, however, the reflected line-segment is longer than
the line joining the centerpoint [of the sphere] and the visible object, then
the intersection-point will lie behind the eye [case 5 above].

Let ABG [in figure 3.28] represent the arc of a circle lying on a concave
mirror with centerpoint D. With the eye placed at point E, let the reflection
be assumed to occur at equal angles along
EB and BZ. Then, from point D, let line
DH be drawn equal to HB. Likewise,
from point D, let line DT be drawn longer
than TB, let line DZ be drawn shorter
than ZB, and let H, Z, and T represent
the visible objects. Finally, let each of the
lines drawn from E to the visible objects
fall, like EZ, between the center of the
sphere and the mirror. We say, then, that g
DH is parallel to EB, that DT intersects it behind the mirror, and that DZ
intersects it behind the viewer.

Now, since DH = BH, angle DBH, which is equal to angle DBE, will be
equal to angle BDH. Thus, angle BDH = angle DBE, and so line EB will be
parallel to line DH. Again, since line BT < DT, angle BDT < angle DBT,
which is equal to angle DBE. Thus, lines EB and DT intersect on the side
of B and T, which lie beyond the mirror, since BZ is always reflected from
the other side of line BD. By the same token, if angle BDZ > angle DBZ,
which is equal to angle DBE, lines BE and DZ must meet on the side of
points E and D, and it is evident that the intersection occurs behind the eye,

because ZE lies between B and D.25

Case 4, in which the image-point lies at the center of sight, occurs when line
EZ coincides with cathetus DZ, which therefore intersects incident ray EB at
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point E. Case 3, in which the image-point lies between the center of sight and
the mirror, occurs when line EZ lies beyond cathetus DZ, which therefore
intersects incident ray EB between E and B.

Precisely what is seen in the various cases described above? Prolemy ad-

dresses this question in Optics, IV, 69-70 (pp. 194-195):

[3.18] But if . . . . the image has no determinate location where it may be
seen, then the sight fixes on a location common to both the image and the
mirror. The same thing happens when the two straight lines just mentioned
intersect in such a way that the image appears at the center of sight. But
when the point of intersection lies behind the mirror, the image-locations
preserve their proper disposition, for they appear behind the mirror. When,
however, the distances [of such intersection-points] become inordinate, they
are always [perceptually] shortened.

In addition, when the point of intersection lies behind the eye, the visible
object is not seen behind the viewpoint, for such a perception is impossible.
Rather, it appears in front of the mirror, even though the impression arising
in the sense does not render the image in its proper place but transfers it to
a location that is not its own, just as we have already pointed out. For the
location, which is not properly assigned, renders the visible object on the
very surface of the mirror. But when the location is properly determined,
the image appears where it ought to according to the eye. And this is how
images are formed in a mirror: namely, that objects whose images are formed
beyond the eye and the mirror appear behind the mirror, while those whose

images are formed behind the eye appear in front of the mirror.26

Here we have a conclusion that is both counterfactual and illogical by modern
lights yet is forced upon Ptolemy by his theoretical model. When the inter-
section-point of the incident ray and the cathetus is indeterminate or lies at
the center of sight, nothing is in fact seen. Nonetheless, while recognizing
that nothing appears to be seen in these cases, Ptolemy is compelled to posit
some sort of image. Why? Because at the very heart of his visual theory lies
the supposition that, whenever a visual ray touches a visible object, the object
will be seen. In all the above cases, the reflected ray BTHZ touches the ob-
ject-points, so those points must all somehow be seen. To account for the
appearance of invisibility in certain cases, then, Ptolemy suggests a transposi-
tion of the image by the visual faculty toward the mirror’s surface. Coalescing
with that surface in cases 1 and 4, the image takes on its color and thus be-
comes indistinguishable from it. In short, it becomes a true ghost image. In
case 5, however, the image is transposed not to the reflecting surface itself but
to a point between that surface and the center of sight so that the image cre-
ated by the visual faculty is “real.” Prolemy concludes in Optics, IV, 71-73
(pp- 194-195) with an empirical corroboration of his geometrical analysis:
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[3.19] [EXPERIMENT IV.1] But we can examine the cases of image-loca-
tion that we have discussed, each in turn, using the bronze template we
described earlier.2” As before, in figure 3.28 [redrawn as 3.29], we draw
lines EB and ZB [reflected from ABG]
at equal angles and DH parallel to EB.
We then draw EDZ, position the eye at
E, and place the concave mirror on arc
ABG while setting ourselves to observe
the images of small colored pegs placed
upon line BZ.

The image of the peg placed at Z or
H will seem to coalesce [with the sur-
iucc]v wh‘crc point B ilCh‘. on 1h.c.m|1'ror. figiice 3.29
and it will take on both its position and
color. For there is no proper, determinate location for the image of anything
located at Z or H. In fact, nothing lying at point H has a proper intersec-
tion-point, whereas what lies at Z shares a common location with the eye,
since the intersection lies at E.

The images of objects lying between these two points [Z and H] do not
appear on the mirror itself, because those images have determinate loca-
tions. But whatever lies between B and H appears to lie beyond the mirror
at the point of intersection, whereas whatever lies between H and Z appears
to lie in front of the mirror for the reason appropriate to it. For if we draw
line BET, and lines DK and DZ as well, and if their intersections lie at
points E and T, the image of point Z will lie at point B. Accordingly, the
image of the intersection at point T will appear toward K, which lies in front
of B with respect to D, because the location of T with respect to E lies in
that direction.

This experimental demonstration is instructive, because it shows that Ptolemy
got the “facts” straight at an observational level, even if theoretical consider-
ations forced him to misconstrue them. Thus, in the case of an indeterminate
intersection or one that occurs at the eye itself, no image is in fact seen, whereas

if the intersection lies beyond the eye, one sees a sort of real image that is more
or less distinct depending on how far beyond the eye the intersection lies.
Bear in mind, however, that the fact that no images can be seen in certain

circumstances was logically impossible for Ptolemy, so he was compelled to
adduce the counter-fact of ghost images to account for the apparent lack of
visible images.

4. Image-Formation and Distortion

The very formation of images in mirrors constitutes a distortion of sorts,
insofar as the object appears to be in a place other than the one it actually
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occupies. Such displacement constitutes a fundamental anomaly, insofar as
there is a difference between apparent and real location. This fundamental
anomaly is subject to specific variation according to the shape of reflecting
surface, being least variable in plane mirrors and most variable in concave
mirrors. Likewise, size- and shape-distortion constitute basic anomalies that
vary with the shape of the reflecting surface, and so, to some extent, do the
anomalies of image-reversal and image-inversion. Image-distortion thus ranges
in complexity according to the progression of mirrors from plane, through
convex, to concave. Our study in this section will follow that order of com-
plexity, starting with plane mirrors, moving to convex mirrors, and conclud-
ing with concave mirrors.

Plane mirrors: the basic anomalies of image-formation in plane mirrors are
analyzed in a somewhat cursory fashion in two propositions of the Euclidean
Catoptrics. Proposition 7 (pp. 298-300), addresses image-inversion along the
normal (i.e., in an up-down sense), whereas proposition 19 (pp. 314-16) deals
with right-left reversal as well as with the size- and distance-relation between

object and image:

[3.20] [PROPOSITION 7] In plane mirrors altitudes and depths appear
upside-down.

Let AE [in figure 3.30] be an altitude, AL a plane mirror, and B the eye.
Let visual rays BC and BD be reflected to E and K [respectively]. Hence, if
the [incident] rays [BC and BD] are extended in a straight line, point E at
the [object’s] top appears at point T at the [image’s] bottom, whereas point
K, which is lower [on the object], appears at point Z, which is higher [on the
image].

E B

T
/|

figure 3.30 figure 3.30a

On the other hand, let EA [in figure 3.30a] be a depth, AC a plane mir-
ror, and D the eye. Let rays DC and DB be reflected to E and Z [respec-
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tively]. If, as before, the [incident] rays are extended [in a straight line] to T
and K, point E, which is lower [on the object], will appear at T, which is
higher [on the image], whereas Z, which is higher [on the object], will ap-
pear at K, which is lower [on the image].

[PROPOSITION 19] In plane mirrors rightward objects appear leftward,
whereas leftward objects appear rightward, the image is the same size as the
visible object, and the distance [of the two] from the mirror is equal.

Let AC [in figure 3.31] be a plane mirror and B the eye. Let visual rays
BA and BC be reflected to E and D. Let ED be the object that is viewed, let

L K

A

e

3

figure 3.31

perpendiculars EZ and DT be dropped from E and D to the mirror, and let
them be extended [beyond]. Also, let rays BC and BA be extended and let
them intersect the perpendiculars at Kand L. Let LK be drawn. Therefore,
E appears at K, while D appears at L for this has already been demonstrated
[in proposition 16, passage 3.16 above]. Hence, the leftward parts appear
rightward, and the rightward leftward. Moreover, since angle KCZ = [angle]
ZCE, and since the angles at Z are right by construction, ZK = ZE. Conse-
quently, the distance of ED from the mirror is equal to the distance of image
KL [from the mirror]. Finally, the object ED that is seen is the same size as
its image KL, because EZ = ZK, DT = TL, and TZ is common and perpen-
dicular.

From these two theorems we can conclude that, whereas the image’s orienta-
tion is subject to distortion (i.e., left-to-right in the frontal plane and top-to-

bottom in the plane of the normal), its relative distance and size are not. But
what about shape? Ptolemy addresses this question in Oprics, 11, 82-86 (pp.
157-159):

[3.21] [THEOREM IIL.7] In plane mirrors, the image of a magnitude
appears to have the same shape as that magnitude would if it were to lie
where the visual rays would strike unreflected.

Let ABGD [in figure 3.32] be a right-angled parallelogram, let its sides
be bisected at points E, Z, H, and T, and let the two lines EKH and ZKT be
drawn between them. Let two circular arcs be drawn through point Z such
that one of them, LZM, has its convex face toward the mirror and the re-
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flected ray, while the other, NZS, is identical but has its concave face toward
them, and let them be positioned in such a way that KZ is perpendicular to
them both, as is the case in a face-to-face orientation. Let line EKH lie on
the plane mirror, and let the [reflected] visual ray proceed along KZ in the
direction of the visible object.

Now let the two lines AE and GH be extended so that lines EO and HF
are equal to lines EL and HM [respectively], and let lines EQ and HR be
taken equal to lines EN and HS [respectively]. From what we have previ-
ously determined, then, it is evident that the image of line BD will appear as
a straight line along ATG. Meanwhile, the image of convex arc LZM will
appear along FTO, while the image of concave arc SZN will appear along
QTR.%#

Line ATG is straight, because lines EA, KT, and GH are equal, and all
the angles are right.

The line passing through points O, T, and F is convex, whereas the line
passing through points Q, T, and R is concave. The reason is that the visual
ray directed along line KZ to point T is normal to all the images of the lines,
whereas the rays that reach the endpoints of the lines and all the remaining
spots on them are oblique. With respect to ray [KZT] that reaches T, the
rays that reach O and F are proportionately longer than those that reach A
and G, whereas with respect to ray [KZT] that reaches T, the rays that reach
Q and R are proportionately shorter than those that reach A and G. In the
case of magnitudes or lines to which visual rays are dropped, when the ratio
of oblique to orthogonal rays is greater [than it is for a straight line] from a
face-to-face perspective, then those magnitudes will appear convex. When
this same ratio is smaller [than it is for a straight line], those magnitudes will
appear concave. Line ATG will therefore be convex when it is curved to
coincide with OTF, whereas it will be concave when it is curved to coincide
with QTR. So line ATG [itself] is straight, whereas without exception line
OTF is convex and line QTR is concave.

Distortion with respect to image-location, finally, is treated by Ptolemy in

Optics, 111, 91-95 (pp. 159-161):
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(3.22] [THEOREM II1.8] In plane mirrors, the image lies on the same side
as the actual object whose image it is, and if visible objects move in some
given direction, their images move in the same direction as far as the eye is
concerned,

Let straight line ABG [in figure 3.33] lie on a plane mirror, and let D be
the eye and EZ the visible object. Let H T L
the two ray-couples DAE and DBZ

[emanating] from the eye at D be re-

flected at equal angles to points E and
Z. Then let DA and DB be continued
rectilinearly to points H and T [respec-

tively], where they intersect the two per-
pendiculars [EH and ZT] dropped to
AB from points E and Z. Let line HT
be joined. Point E will therefore be seen
at point H and point Z at point T, and,

in fact, those two images appear to lie figure 3.33
on the same sides as the two points gen-
erating them.

Now, let line EZ be continued rectilinearly until Z reaches K, and let ray
DGK [emanating] from point D reflect at equal angles to K. Then let line
DG be extended until it meets point L on the perpendicular dropped from
point K to line AG. The image that appeared at T has thus been shifted to
L, and this shift takes the same direction as that of the visible object itself,
i.e., from Z toward K.

For instance, if we assume that KZ and BG both lie above the eye, then
image TL will appear to lie higher than the eye. And this image will be seen
as the object itself is seen [in direct vision]: what is higher appears above,
and what is lower appears below. Objects that are seen directly appear in
precisely the same way: i.e., what is above appears above, and what is below
appears below, for a higher visual ray sees what is above, whereas a lower one
sees what is below.

If, moreover, we assume that both KZ and BG lie to the right of the eye,
then image TL will also lie to the right, and T will shift to the right [when it
moves] toward L. Nevertheless, the image of T will be judged to lie on the
right-hand side [of TL], while that of L will be judged to lie on the left-hand
side, for when objects are seen directly, face-on and parallel to our facial
plane, their right side does not correspond to [our] right side, nor does their
left side correspond to [our] left side; instead, the reverse is true.

In all, then, image-distortion in plane mirrors is as simple as it is limited:

object and image are symmetrically related in terms of orientation and loca-
tion, whereas relative size, shape and distance remain unaffected.
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Convex mirrors: it is with convex mirrors that we encounter true image-
distortion—distortion, that is, of shape, size, and distance rather than simply
relative orientation and location, which are in fact “distorted” by image-rever-
sal in the same way as they are in plane mirrors: i.e., left-to-right in the frontal
plane and top-to-bottom in the plane of the normal. This top-to-bottom
reversal in the plane of the normal is dealt with in extremely cursory fashion
by Euclid, in proposition 8 of the Catoptrics (p. 300), where the burden of
proof is laid upon proposition 7 (passage 3.20 above), for, since it has been
established that the visual rays reflected to the top and bottom of a given
altitude do not intersect (passage 3.4 above), “the rest follows as [it does] in
plane mirrors.”

As to the left-right reversal of images in convex mirrors, Euclid addresses
this issue in the first part of proposition 20 of the Catoptrics (pp. 316-318):

[3.23] [PROPOSITION 20] /n convex mirrors left appears right, whereas
right appears lefi. . . .

Let AC [in figure 3.34] be a convex mirror, T the center of the sphere,
and B the eye. Let rays BA and BC be reflected to D and E, and let DE be
the object that is seen. Then, from centerpoint T let TD and TE be drawn
to D and E, let the rays [BA and BC] be extended to Z and H, and let image
ZH be drawn. Accordingly, D appears at H, and E at Z. Therefore, the

figure 3.34 figure 3.35

right-hand side [of DE] appears [to lic] on the left [of the facing image],
whereas the left-hand side appears on the right.

The problem of image-reversal along the frontal plane is treated by Prolemy in

a more comprehensive way, as is evident from the following theorem, which

comes from Optics, 111, 127-130 (pp- 170-171):
[3.24] [THEOREM II1.16] In convex mirrors, the image of objects is seen

on the same side as the actual object, and, if the visible objects move in a
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given direction, their image moves in the same direction.

Let ABG [in figure 3.35] be the arc of a circle lying on a convex mirror
whose center is D, let E be the eye, and let the visible object occupy points
H and Z on both sides of the eye. Let the two ray-couples EAZ and EBH be
reflected at equal angles to those points, let lines DZ and DH be drawn, and
let EA and EB be extended to meet them at points T and K [respectively].
Accordingly, Z will be seen at T, and H at K, and each of those images [will
lie] on the same side as the actual object of which it is an image.

Let H be moved toward L, and let ray-couple EGL be reflected to it at
equal angles. Then let line DL be drawn so that line EG, when extended,
intersects it at M. The image that lies at point K is thus transposed to M, so
it is transposed to the same side as the object itself; and this follows necessar-
ily from the reasons that we gave in our discussion of the image seen in plane
MIrTors.

If we place points H and L above the eye, then points K and M, which
are the images of H and L, ought to appear above the eye, and the magni-
tude that lies between them will appear above the eye. And if we place H
and L to the right of the eye, their images K and M will lie to our right, and
so [the magnitude that lies between them] will be judged to lie to the left.
Still, this image will not be seen in the same way as an object that faces us
directly, but [what lies to the right] will be judged to lie to the left, and what
lies to the left will be judged to be right according to what is usual, as we
have already said, in the case of facing objects.

As with the problem of image-reversal in the frontal plane, so with the prob-

lem of distance-distortion, Euclid’s treatment in the second part of proposi-
tion 20 of the Catoptrics is relatively primitive. Ptolemy, on the other hand,
provides a fairly complete analysis of the problem in Optics, 111, 110-116 (pp.
165-166):

[3.25] [THEOREM II1.12] In convex mirrors, the distance of the visible
object from the eye, as well as from the M
mirror’s surface, is greater than the dis-
tance of the object’s image [from the
mirror’s surface].
Let ABGD [in figure 3.36] be the
arc of a circle lying on a convex mirror,
and let the center be at E, the eye at Z,
and the visible object at H. Let the vi-
sual ray-couple ZBH be reflected at
equal angles to the visible object, and
let the two lines EB and EH be joined. E
Then let BZ be extended until it inter-
sects EH at point T. Accordingly, the figure 3.36
image of point H will lie at T. We say, therefore, that lines BZ and BH
[taken together] are longer than line ZBT, and that GH is longer than GT.
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Let line KBL be drawn tangent to the circle at point B. Since angle ABZ
= angle DBH, and [horn] angle ABK = [horn] angle DBL, it follows that
angle KBZ, which equals angle LBT, is equal to angle LBH. But angle LBT
is acute, because angle EBL is right, and angle BLH > angle BLT. Therefore,
line BH > line BT. With line ZB taken as common, lines ZB and BH [taken
together] will be longer than line ZBT.

Moreover, since BH : BT = LH : LT,2? line LH > line LT. GH therefore
surpasses line GT by an even greater margin.

On the basis of what we have said, it will also be easily demonstrated
that, in the case of objects that withdraw [away from the mirror’s surface] or
objects that lie farther than others [from that surface], the image lies farther
away, and its distance [behind the mirror] appears greater.

Accordingly, let line BH be extended to M, and let line EM be joined.
Then let line ZBT be extended until it meets line EM at point N.

If, then, we assume that H is distinct from M and that M is farther away
[from the mirror’s surface] than H, then N, which is the image of M, will
certainly lie farther away from the eye at Z than T, which is the image of H.
Moreover, if we assume that H coincides with M but that its distance in-
creases as it moves from H to M, then its image will also become more
remote, since it has shifted from T to N.

Next comes the issue of size-distortion, with which Euclid deals in proposi-
tion 21 of the Catoptrics, where his proof is indirect, depending, as it does, on
showing that the image in a given convex mirror will be smaller than the
image in a corresponding plane mirror, this latter image being the same size as
the object. As is evident in the following excerpt from Optics, 111, 117-120
(pp. 166-167), Prolemy approaches the problem of size-distortion in a more
direct way:

(3.26] [THEOREM II1.13] In convex mirrors, when objects are situated in
the way we specified for plane mirrors (where the lines joining the endpoints
of the object lie face-on to the mirror), the image appears smaller than the
objects themselves [would appear] if they H E 7

were transposed to where the image lies,
with the very same orientation and dis-
tance, and were viewed without reflection.
Let ABG [in figure 3.37] be the arc of G
a circle on a convex mirror, whose center B
is D, and let E be the eye. Let normal X
EBD be dropped from point E, let ZH be
the line joining the endpoints of the vis-
ible object, and let the visible object be so
disposed that line EBD bisects line ZH at figure 3.37
right angles, as is the case for a facing ob-
ject. Let the two ray-couples EAZ and EGH [emanating] from point E be

D
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reflected at equal angles to Z and H [respectively]. Then, let lines DZ and
DH be drawn, and let EG and EA be extended until they meet lines HD
and ZD at points L and T [respectively]. Finally, let line TL be joined.
According to the principles we have established, then, the image of Z ought
to be seen at T, and the image of H at L. Also, line TL will be the line
joining the endpoints of the object’s image, and its orientation, [being face-
to-face,] will be the same as that of ZH.

Furthermore, since the distance of point E, the eye, from either of the
points Z or H is the same because of their similar disposition, then the
angles created by reflection to those points will be equal. Also, the distances
of points T and L, which lie on the image that is seen in the mirror, will be
equal with respect to point E, so that lines ET and EL will be equal. Mean-
while, angles ETK and ELK will be equal, as will angles TEK and KEL, so
triangles EKT and KEL will be equal and equiangular. But the angles at K
are right, so line TL is parallel to line ZH. Consequently, DH: DL = ZH :
TL. But line DH > line DL, so line ZH > line TL.30

Now, if line ZH were transposed to the location of line TL, and if the eye
at E were to view it directly, it would be seen under a larger visual angle than
TEL, which [image LT] subtends. And this accords with what we proposed.

The final issue to be dealt with is that of shape-distortion. As usual, Euclid’s
treatment (in proposition 23 of the Catoptrics, pp. 324-326) is both sketchy

and incomplete, covering only the basic distortion of plane figures by convex
P g yi P g v

mirrors. Ptolemy, on the other hand, takes a more comprehensive approach

in Optics, 111, 121-126 (pp. 167-170):
[3.27] [THEOREM III.14] In convex mirrors, facing straight lines appear

convex. In the case of circular arcs, however, those whose convex curvature
faces the mirror and the reflected
ray appear convex, whereas those £
whose concave curvature faces the
mirror sometimes appear convex,
sometimes srraight, and some-
times concave.3!

Let ABG [in figure 3.38] be
the arc of a circle lying on a con-
vex mirror, whose center is D, and
let E be the eye. Let normal EBD
be dropped from the eye to the
mirror, and let two equal arcs BA
and BG be marked off on either
side of B. Let the two ray-couples
EAZ and EGH [emanating] from
the eye at E be reflected at equal
angles from points A and G [re-

figure 3.38
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spectively]. Let two lines be drawn tangent to the circle at point B, and let
one of them, TBK, be straight, while the other, ZBH, is a circular arc with
its convex curvature facing the mirror and the reflected ray. Then, let lines
TD, KD, ZD, and HD be drawn to intersect [the extensions of] lines FA
and EG at points L, M, N, and § [respectively]. Accordingly, the image of
point T, which is one endpoint of the straight line, will lie at L, and the
image of point K [the other endpoint] will lie at M. Meantime, the image of
Z, which is one endpoint of the convex line, will lie at N, whereas the image
of H [the other endpoint], will lie at S.

It is therefore evident that for both [line-segments] common point B will
appear at B, since this is where the mirror’s surface and the visual ray inter-
sect. However, the convexity of arc ABG lies toward the eye at E, and the
images of simple lines, which comprise a single line, themselves comprise a

single line of a unique ty})c.32 Hence, the eye will see the two lines passing

through points L, B, and M and points S, B, and N as convex, since they are
more sharply curved than arc ABG. Still, arc SBN will be more sharply
curved than LBM. Since the objects face the eye, and since the oblique lines
produced from [the endpoints of] the diameter are proportionately longer
with respect to the normal [in the case of the image] than the corresponding
oblique rays when the object is seen directly, the line passing through points
L, B, and M, which defines the image of straight line TBK, will be convex.
By the same token, the line passing through points N, B, and S, which
defines the image of convex line ZBH, will also be convex.

[THEOREM III.15] If the line that is seen is concave, it can be demon-
strated as follows how it is possible, using the distance along the normal
between the two arcs [of the concave object-segment and the convex mir-
ror], that the image might sometimes appear convex, sometimes concave,
and sometimes straight:

Let ABG [in figure 3.39] be the arc of a circle lying on a convex mirror
whose center is D, let the eye be at E, and let E
the normal be EBD. Let circular arc AZG be
drawn from points A and G so that it cuts per-
pendicular BE [at Z]. Let two equal arcs ZH
and ZT be marked off on each side of Z, and let
the two ray-couples EKH and ELT [emanating]
from point E be reflected at equal angles to H
and T. Let DT and DH be drawn, and let them
intersect the extensions of lines EK and EL at
points M and N. Thus, H will be seen at M,
and T at N, while points A and G will be seen

where they actually lie.
Depending on how sharply curved concave
arc AZG is, it is possible for points M and N figirs 3039

sometimes to lie between arc ABG (which is an arc on the mirror) and the
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straight line joining points A and G, sometimes to lie on that straight line
itself, and sometimes to lie between that straight line and D (which is the
sphere’s center). Now it is clear that, when images of this kind lie on one
line, and points M and N lie between the mirror and the straight line join-
ing A and G, then the eye at E will see their convexity directed toward it.
But if points M and N lie on that same straight line [joining A and GJ, then
the image will appear straight, whereas if the image is farther removed from
E [than that straight line], it will appear concave.33 This will be obvious
through a construction of the image on the basis of the ratios between ob-
lique and normal rays.

Concave mirrors: Not surprisingly, the variability of image-location in con-
cave mirrors, which depends upon the relative locations of the eye, the object,
and the mirror’s surface, makes image-distortion correspondingly variable and
complex. As in the case of spherical convex mirrors, so in this one, apparent
distance, apparent size, and apparent shape are all subject to distortion. How-
ever, in the case of spherical concave mirrors, the type of distortion depends,
first, upon whether the image is “virtual” (i.e., lies behind the mirror’s surface)

or “real” (i.e., lies between the eye and the mirror’s surface). Also, depending

on the type of image, there can be image-inversion.
Euclid deals with the issues of distance- and size-distortion, as well as
image-inversion, in the second part of proposition 28 of the Caroprrics (pp.

334-336):

[3.28] Let the eyes B and C [in figure M
3.40] be placed above the point [N] that
bisects the radius [ZA], and let them be
placed equidistant from radius ZA. Isay

that B and C are seen [in the mirror],
that the right-hand side appears leftward,
while the left-hand side appears right-
ward, that the image of the face appears

larger [than it should], and that the im-
age appears to lie at a greater distance i
from the mirror[‘s surface] than it
should. Bgure 3,40

Now, let BA be a reflected ray, let ZB and ZC be extended, and let BA be
extended. With AZ having now been bisected at N, BZ > BA, and angle
BAZ > BZA. But angle BAZ = angle CAZ, so angle CAZ > angle BZA.
Hence, if ZB and CA are extended, they will intersect.34 Let them intersect
at P. By the same token, BA and BC will intersect at T. Therefore, C will be
seen at T, and B at P, and what lies on the right appears to the left, and what
lies on the left appears to the right. Furthermore, TP > BC, for they are
parallel. Therefore, the image appears larger and more distant from the
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mirror(s surface than it should], for MA > AL.
If, however, the eyes are placed beyond the [mirror’s] diameter, then the
right-hand side appears rightward, whereas the left-hand side appears left-
ward, and the image of the face appears D
smaller [than it should] and [is seen] berween
the face and the mirror[‘s surface].
Let B and C [in figure 3.41] be the eyes,
Z the mirror’s centerpoint, and let AZD be

perpendicular to the diameter as well as to
BC so that BA = AC. Let [visual ray] BD be
reflected to C, let BZK and CZE be extended
through the [mirror’s] center [of curvature
Z), and let KE connect K and E. Hence, B
is seen at K, and C at E. Accordingly, the A

right-hand side appears to the right, the left- figure 3.41

hand side to the left, image EK appears

smaller than the face BC, and the image appears between the face and the

mirror[s surface].3?

As we might by now expect, Prolemy’s treatment of image-distortion in
concave mirrors is far more systematic and extensive than Euclid’s. Accord-
ingly, he deals with each type of distortion in its turn, beginning with an
analysis of distance-variation for point-images. The following passage from

Optics IV, 109-119 (pp. 205-207) deals with two cases: the first involving
images that appear behind the mirror’s surface (i.e., “virtual” images), the sec-

ond involving images that appear between the mirror’s surface and the eye
(i.e., “real” images):

(3.29] [THEOREM IV.30] Accordingly, in concave mirrors, when the
image lies behind the mirror, the distance of the visible object [along the
reflected ray-couple] will be smaller than that of its image [along the inci-
dent ray] if the visual radiation were N
to continue behind the mirror.
Let ABG [in figure 3.42] be the
arc of a circle inscribed in a concave
mirror with centerpoint E. Let point
Z be the eye, and point H the visible
object to which ray-couple ZBH is
reflected at equal angles. Let
[cathertus] EHGT be drawn, and let
BZ and HE be extended to intersect
at point T beyond the mirror. There-
fore, the image of H will lie at point figure 3.42
T. We say, then, that BZ + BH < ZT,
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whereas GH < GT.

Let [normal] EB be drawn, and let line KBL be drawn tangent to the
circle at point B. Therefore, [curvilinear] angle ABZ = [curvilinear] angle
GBH, and [horn] angle ABK = [horn] angle GBL, so that the whole angle
KBZ, which is equal to angle TBL, is equal to angle LBH. Now angle BLH
is acute, since angle LBE is right. Therefore, angle BLH < angle BLT. And
if we posit angle BLM = angle BLH, then, since angles MBL and LBH in
triangles MBL and LBH are equal, while side BL is common, it follows that
MB = BH. Consequently, BH < BT. And if we take BZ as common, then
ZB + BH < ZBT.

Moreover, since LH : T = BH : BT, while BH < BT, then LH < LT, and
GH will be much smaller than GT.

From what we have established, it is evident that, if the distance between

the objects and the same viewpoint increases, or if that distance is greater,

then the distance between the images and the eye increases, or that distance
will be greater. For if we extend BH to S and continue [cathetus] ES until it
meets the prolongation of ZBT at point N, then the image of S will lie at
point N, and so BS + BN > BH + BT.

[THEOREM IV.31] If the image that appears in concave mirrors lies
between the eye and the mirror, the distance of the visible object from the
eye [along the reflected ray-couple] will be
greater than the distance of its image [along
the incident ray]; nevertheless, the image’s dis-
tance from the mirror will sometimes be
smaller, sometimes greater, and sometimes
equal.

Let ABG [in figure 3.43] be the arc of a
circle inscribed in a concave mirror with
centerpoint D, and let normal DB be drawn. figure 3.43
Let point E be the eye, and let ray-couple EBZ
emanating from point E be reflected at equal angles. Then, let [cathetus]
TDH be drawn through point D perpendicular to BD, and let the two
catheti KDZ and LDM intersect one another at corresponding angles.

If, therefore, we place [magnitude] ZTM at the location that is observed,
then, according to principles established earlier, the image of Z will lie at
point K, the image of T at H, and the image of M at point L. Indeed, they
fall between E and B, and their distance from E will be less than EB. More-
over, that distance will be much less than the [eye’s] distance from the ob-
ject-points reached by reflection, e.g., [along] EB and BM.

It is also evident that, if angle EBZ is bisected by line BD, then BT =
BH, and DT = DH. But line BZ > BK, while ZD > DK. Also, line BM <
line BL, and MD < LD. Hence, the image of T will lie at point H, and the
distance of both [points] from point B will be equal. But the distance[from
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point B] of Z’s image, which appears at K, will be less [than that of Z itself],
and the distance [from B] of M’s image, which appears at L, will be greater
[than that of M itself].

So it is clear that, when the distance of objects from the same eye in-
creases, or when it is greater, the distance of their images from the eye in-
creases or will be greater. For, since the distance of point Z from the eye is
greater than that of the remaining points, its image appears farther away,
and since the point-object at M lies nearer the eye, its image, which is at L,
is formed nearer [the eye] than the remaining images.

On this basis, then, it is evident that, when the distance of the visible
object is no greater than the distance of the line [HDT] passing through the
center of the sphere, but when, instead, the object itself and the mirror lie on
the same side of this line, the actual object will always lic a shorter distance
from the mirror than its image.

Prolemy then turns from point-images to lengths in order to establish a link
between eye-to-image distance and size-distortion, that link following from

the fact that, if the image appears farther away than it should, it will also
appear smaller than it should. The following passage from Oprics. IV, 120-
129 (pp. 207-210) addresses this size-distance linkage in the case, first, of
“virtual” images, and second, of “real” images:

[3.30] [THEOREM IV.32] In concave mirrors, if the image of a visible
object appears behind the mirror and the location of the generating object is
what we have called “facing,” then, according to what we have already said
in regard to other mirrors, the lines joining the endpoints of the images of
visible magnitudes appear longer than the lines joining the endpoints of the
visible magnitudes themselves, assuming that those magnitudes were ob-
served directly from the [same] fixed viewpoint at the same distance as that
of the image and with the same orientation.

Let ABG [in figure 3.44] be the arc of a circle inscribed in a concave
mirror with centerpoint D. Let E be the eye, and let normal DEBL be
drawn from E. Let ZH be the line joining T L K
the endpoints of the visible object, which is

oriented so that line BD bisects it at right

angles, for it must be placed in a directly

facing position. Then, let the two rays EA

and EG be reflected from E to Z and H.

Let those two lines be extended to intersect

the continuations of catheti ZD and DH at D

points T and K, which lie behind the mir-

ror. Let line KT be joined, and let line DB figure 3.44

be extended to cut it at point L. Therefore,

the image of Z will be seen at T, and the image of H at K. But line TK joins

the endpoints of the object’s image, and its orientation is the same as that of
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ZH.

Therefore, since points Z and H lie the same distance from the eye at E,
and since the angles of reflection are equal, image-points Kand T will lie the
same distance from point E. Also, since both lines EL and ET are equal to
lines EL and KE, respectively, and since angle TEL = angle KEL, it necessar-
ily follows that the [respective] angles of both triangles are equal. The angles
at L will be right, and KT will be parallel to line ZH. Moreover, KT : ZH =
TD : ZD. But TD > ZD. Therefore, TK > ZH. And if ZH is transposed
to location KT and maintains the same orientation, visual angle KET will
be larger than the visual angle subtended by ZH, assuming that it is looked
at directly and that its distance and orientation are the same as that of TK.
Thus, to the eye at E, KT will appear longer than ZH.

[THEOREM IV.33] In concave mirrors, when the image of a visible
object appears between the mirrors and the eye, and when it is oriented [in
a facing position] as we specified, the straight lines joining the endpoints of
the visible magnitudes sometimes appear to be equal to [those of] their im-
ages, sometimes longer, and sometimes shorter, when those visible magni-
tudes are observed directly and maintain the same disposition and distance
as their images, assuming that the eye remains fixed.

Let ABG [in figure 3.45] be the arc of a circle inscribed in a concave
mirror with centerpoint D, let line BD be drawn, and let E be the eye. Let
line ZH, which joins the endpoints of

sl SR Ly S

the visible object, be positioned in such

a way as to be bisected by line DB at

right angles, according to what must

obtain in the case of things that have a L
facing orientation. Let the two ray- K i
couples EAH and EGZ emanating \D
from point E be reflected at equal

angles to points Z and H. Let [catheti] 7 \/ H

Z[D]T and K[D]H be drawn, and let
them cut lines EA and EG in points T £
and K. Finally, let line KL'T be joined.

The image of Z will therefore appear figure 3.45
at point T, and the image of H at point

K. KT will be the line joining the endpoints of the image, and its orienta-
tion will be the same as that of ZH.

Therefore, since the distances of the eye at E from points Z and H must
be equal, as we have previously said, and since the angles of reflection are
equal, the distances of K and T from point E are equal. Moreover, the two
lines KE and EL are equal to lines ET and EL, and angle KEL = angle TEL.
Therefore, triangles ETL and EKL will be equiangular, and the angles at L
will be right, while line TK will be parallel to line ZH. Also, ZH : KT = DZ

: TD. But we have already shown in the previous discussion that it is pos-
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sible for DZ sometimes to be equal to DT, sometimes shorter, and some-
times longer. Thus, it is possible for ZH sometimes to be equal to KT,
sometimes longer, and sometimes shorter.

However, if ZH is transposed to the position of KT, while it maintains
the same orientation, angle KET will sometimes be equal to the angle sub-
tended by ZH, if its disposition and distance are the same as that of KT and
if it is observed directly, and it will appear equal to the eye at EL. But
sometimes it will be greater and will appear greater, whereas sometimes it
will be smaller and will appear smaller.

Moreover, all objects whose distances from point E are less than half the
radius of the sphere that forms the mirror mainrain a distance between the
endpoints of the magnitude that is greater than the distance between the
endpoints of the image.

Now we come to the issue of shape-distortion, which Ptolemy addresses for

both cases in order of simplicity (i.e., first for “virtual” images and then for
“real” images) in Optics, IV, 130-141 (pp. 210-214):

[3.31] [THEOREM 1V.34] When the image of an object that is seen in
concave mirrors lies behind them, or between them and the eye, straight
objects that face them directly appear concave. Furthermore, circular ob-
jects whose concave side faces the mirror and the reflected ray appear con-
cave, but those whose convex side faces the mirror sometimes appear con-
cave, sometimes straight, and sometimes convex.

[CASE 1]

First, then, let the image of the visible object lie behind the mirror. Let
ABG [in figure 3.46] be the arc of a circle inscribed in a concave mirror with
centerpoint D, and let line BDE be drawn.
Let line ABG be bisected at point B. Then,
through points A and G, let straight line AZG
be drawn along with circular arc AHG, which
has its concave side facing the mirror and the
reflected ray. Let DH > HB, and let the eye
be at point E.

The image of points A and G on these
two lines will thus appear at points A and G

themselves. Meantime, the image of points
Z and H will appear behind the mirror, Z at E

point K and H at point L, for it has been

demonstrated that the farther objects lie from figure 3.46

the same viewpoint, the farther their images

will lie from that viewpoint. But the distance of H from the eye at E, as
judged along the ray-couple [EB, BH] reflected from point B, is greater
than the distance of Z from the eye at E [along ray-couple EB, BZ]. Point L
is also farther away than point K, and both of those points lie on the image.
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So the image of line AZG will appear on the line that passes through
points A, K, and G, whereas the image of arc AHG will appear on the line
passing through points A, L, and G. Moreover, the concavity of arc ABG
will appear to be turned toward center of sight E, and the lines passing through
points AKG and ALG will be more pronounced in their concavity than
ABG, since the rays falling perpendicular to those arcs are proportionately
longer than the ones falling more obliquely. Generally speaking, though,
the images of straight and concave objects will appear concave.

To continue, let a convex arc EBZ [in figure 3.47] be drawn through
point B, tangent to the circle and [thus] to arc ABG. Let [normal] lines
DEH and DZK be drawn, and let DE and DZ be longer than FA and ZG.
Let tangent LBM be drawn through point B of the circle.

Accordingly, the image of EZ can sometimes be seen between L and A
and between M and G, sometimes on L and M themselves, and sometimes
beyond points L and M (e.g., at points H and K), all depending on the
distance of E from A and of Z from point G. But the image of B will lie at
point B itself.30

If the images of E and Z lie at points L and M, then the image of convex
[arc] EBZ will appear along straight line LBM. But when the images of E
and Z lie between A and L and between G and M, then the image will
appear concave, for when oblique rays falling on objects are proportionately
smaller than perpendicular ones, those objects appear concave. Finally, if
the image[s] of E [and] Z lie beyond points L and M, then the image will
appear along a convex line, for in this case the opposite to what we just
specified happens insofar as the oblique rays are proportionately longer than
the perpendicular ones. Thus, when something is concave in comparison to
straight line LBM, it will be absolutely concave, and when it is convex in
comparison to that [same straight line], it will be absolutely convex.

E

figure 3.47 figure 3.48

[CASE 2]
Now, let the image lie between the eye and the mirror. Let ABG [in

figure 3.48] be the arc of a circle inscribed in a concave mirror with centerpoint

D, let line EDB be drawn normal to the mirror, and let the eye be at point E.
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Let HZ be the line joining the endpoints of the visible object, and let line
ED bisect it at right angles.

Accordingly, when catheti ZDG and KDH are extended, the image of Z
will appear at point T, and the image of H at point K. Let cathetus TK be
drawn, and let it be extended to point L on the arc. Let line LDM be drawn,
and let it intersect the extension of line ZH at point M. Thus, the image of
point M will appear between points D and L, since none of the rays emanat-

ing from the eye is reflected at equal angles from point L to point M.37 But

if we suppose that the image of point M lies at point N, then the image of
straight line MH will be seen along the [curved] line passing through points
K, T, and N, and the concave side of this image will face the eye.

The same thing holds if we assume that the line passing through points Z
and H is circular, with its concave side facing the mirror. For, if we con-
struct the arc to which the visual ray is reflected and have its concave side
facing the mirror, as is represented by arc HZS, then the image of point S
will lie between points D and N (e.g., at point O). And the line passing
through points K, T, and O will be even more concave [than the previous
one through K, T, and NJ]. But this very line [KTO] lies on the visible
object’s image.

Let us now suppose that arc ZSH [in figure 3.49] has its convex side
facing the mirror, let us draw straight line
ZH joining the endpoints of the visible
object, and let KNT represent its concave
image. When the rays are shorter, the im-
age of the object seen by them lies closer
[to the eye]. Therefore, since the distance
of § from the eye at E is less than that of L
[from E], as measured by the ray-couple(s
EB, BS and EB, BL)] reflected from point
B, and since the distance [EM] of its im-
age, which lies at M, is less than that of L
[along EN], then point S will be seen be-
tween D and N.

So the image of S can sometimes appear at M, and the image of ZSH will
lie on straight line TMK. But sometimes [it can appear] between M and N,

figure 3.49

and the line will appear concave. Finally, the image can sometimes appear
between points D and M, and the line will appear convex, depending on
how pronounced the concavity [of the visible object] is. Still, the image of
[end]points Z and H will remain fixed at points T and K.

The final type of image-distortion involves image-inversion, which does not
apply to “virtual” images but does apply to “real” ones under certain circum-
stances. Ptolemy’s analysis is found in Optics, IV, 142-151 (pp. 214-216):

[3.32] [THEOREM IV.35] In concave mirrors, when the image of a vis-
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ible object lies behind the mirror, it is perceived to be on the same side as the
actual object; and when visible objects are moved in any direction, their
images appear to move in the same direction.

Accordingly, let ABG [in figure 3.50] be the arc of a circle inscribed in a
concave mirror with centerpoint D. Let
the eye be at E, and let Z and H repre-
sent two visible objects flanking it. Let
catheti DZT and DHK be drawn, and
let the two ray-couples EAZ and EBH
be reflected at equal angles from E to Z
and from E to H. Then, let lines EA and
EB be extended so as to intersect lines
DT and DK at points T and K. There-
fore, the image of Z will lie at point T, figure 3.50
and the image of H at point K. More-
over, those images will be perceived to lie on the same side as the actual
objects.

Let H be moved to L, and let [ray-couple] EGL be reflected to it at equal
angles. Then, let [cathetus] DLM be joined, and let it intersect the exten-
sion of EG at point M. Therefore, the image at K will be moved to point M,
which lies in the same direction as that toward which the actual object has
been moved.

Again, if H and L, which represent the visible objects, are above eye-
level, then their images K and M will be above eye-level and will appear

above [the original location]. For the upper parts of objects directly facing
the viewer are apprehended by higher rays.

If, however, we suppose H and L to lie to the right of the eye, then their
images, which are at Kand M, happen to lie to our right. But those images

are not judged to lie to the right, because the part of what we see facing us
that is touched by right-hand rays and that appears to the right is actually on
the left-hand side of what we see. And [so] the left-hand side of a facing
visible object is apprehended by the right-hand rays in direct vision. But in
the case of reflection, it is the right-hand side that is apprehended, and the
facing sides of the images are directly opposite us, so the images that lie to
the right are judged to lie to the left according to the normal arrangement of
the visual rays in regard to position.

[THEOREM 1V.36] In concave mirrors, when the image of a visible
object lies berween the mirror and the viewer, it is perceived as the reverse of
the actual object, and when the actual object is moved in a given direction,
its image appears to move in the opposite direction.

Let ABG [in figure 3.51] be the arc of a circle inscribed in a concave
mirror with centerpoint D. Let the eye be at E, and let Z and H represent
two visible objects on either side of the eye. From point E let the two ray-
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couples EAZ and EBH be reflected at
equal angles to those [two point-objects].
Let catheti ZD'T and HDK be drawn, and
let lines EA and EB intersect them at
points T and K. Thus, the image of point
Z will lie at point T, and the image of
point H at K. Consequently, the images
will appear on the opposite sides of their
actual [generating] objects.

By the same token, if point H is moved
to point L, if ray-couplcpEGL is reflected figure 3.51
to it, and if cathetus LDM is extended to
meet line EG at point M, then the image of H, which is at K, will move in
the opposite direction from that in which the actual object has been moved.

Furthermore, if H and L lie above eye-level, their images, which are rep-
resented by K and M, will lie below us, and the upper parts will appear
lower. For things that are apprehended by lower visual rays appear at the
lower side of the visible object, but what is apprehended in such reflections
by lower rays appears at the upper side.

And if we suppose that H and L lie to the right of the eye, then their
images (i.e., Kand M) will appear to our left. And so right-hand objects will
appear to the right, for the parts of facing objects that are apprehended by
right-hand rays appear to the left, while those that are apprehended by left-
hand rays appear to the right. Among objects seen by means of such reflec-
tions, moreover, those that move toward the right appear to move toward
the left, because [in this case] our hand does not seem to move as a mirror-
image, but in the opposite direction, as if it were a right hand [rather than a
left]. Indeed, facing objects that are seen in direct vision are disposed so that
their right sides lie to our left.

5. Visual Eﬁl’cts ﬁom Composite Mirrors

That there was a fascination among early optical theorists with mirror-

effects, such as the repetition of images in composite mirrors or the unex-
pected appearance of images in certain mirror-arrangements, is clear from
both Euclid’s Catoptrics and, to some extent, Ptolemy’s Optics. The latter, for
instance, has three theorems (IV, 39-41) expressly devoted to image-repeti-
tion, and in fact so does the former (props. 13-15). The following theorem,
prop. 13 of Euclid’s Cazoptrics (pp. 306-308), which is repeated (with elabora-
tion) in Ptolemy’s Optics, IV, 175-177 (pp. 224-225), serves as a canonical
example:

[3.33] [PROPOSITION 13] The same object can be seen in several mirrors.
Let A [in figure 3.52] be the object that is supposed to be seen, let B be
the eye, and let CD, DE, and EZ be three [plane] mirrors. Let perpendicu-
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K

figure 3.52 figure 3.53

lar BC be dropped from B to mirror BC, and let BC = CS. Then let perpen-
dicular AZ be dropped to [mirror] EZ, and let AZ = ZT. Finally, let perpen-
dicular TK be dropped from T to mirror DE, and let KL = TK. Let LMXS
be drawn from L to S, and straight line MRT from M to T, and let AR and
BX be joined. Then, since BC = CS, and since the angles at C are right, BC
and CX are equal to CS and CX, respectively; moreover, since the right
angle formed by the straight lines BC and CX is equal to the right angle
formed by the straight lines SC and CX, the remaining angles subtending
equal sides will also be equal—i.e., the angle at point B = the angle at point
S, and angle F = angle G. However, angle G = angle N, because the angles
are arranged ar the vertex so that angle F is also equal to angle N. Conse-
quently, ray BX will be reflected to point M. Furthermore, since straight
line TK = straight line KL, and since the angles at point K are right, angle O
= angle P. Hence, that same visual ray, BXM, will be reflected to point R.
By the same token, it will also be reflected to point A, because the angle
formed by straight lines ZR and RA is equal to the angle formed by straight
lines ER and RM, which follows by the same reasoning as previously. Hence,
the visual ray originating at center of sight B sees point A by means of the

three plane mirrors CD, DE, and EZ.

The classical antique source for the analysis of mirror-effects due to mul-

tiple reflections is, of course, Hero of Alexandria’s Catoptrics. To illustrate his
approach, we will look at two propositions from that work. The first of these—
chapter 15 (pp. 350-352)—involves what might be called the “flying man”
effecc:

[3.34] [CHAPTER 15] Let ABG [in figure 3.53] be a right triangle, and let
BG be bisected at T; let ZH be a plane mirror [placed] along AG, and DE a
plane mirror [placed] along AB. Then let TK be an observer whose eye at
point T is directed at whichever mirror he pleases. Then it will be set up
[appropriately]. For if one of the mirrors remains steady—i.e., the one into
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which the observer looks—and the other one, behind him, is moved toward
and away [from his head], his visual ray will [eventually] reach the point

where [the image of] his heel lies, and he will perceive himself as flying.

In the very next proposition, (prop. 16, pp. 352-356) Hero describes how to
set up a mirror inside a room with a window so that what is going on outside

in the street can be seen from within. This he follows with a description of a

five-fold mirror arrangment in which someone standing in the middle will see
himself in all five. He then turns his attention to the following problem: to
set up a mirror so that, in ;1ppmaching it, one sees not his own image, as he
might expect, but another image entirely, one that seems to loom up at him.
This effect is described in the following passage from chapter 18 of the Catoptrics

(pp- 358-360):

[3.35] [CHAPTER 18] To set up a mirror in such a way that anyone ap-
proaching it sees neither himself nor anything else except some particular
image that someone has preselected.

figure 3.54

Let AB [in figure 3.54] be a wall against which the mirror is to be placed,
and let the mirror be inclined against it at some angle. Atany rate, it should
be sufficient if the angle is a third of a right angle. Then let BG be the
surface of the mirror, and from AB let BD be drawn at right angles and
extended to point D, where the center of sight is situated [and let D be
placed] so that the perpendicular extended from it to mirror BG intersects
[the extension of that mirror’s surface] beyond it [i.e., at point E]. Let that
perpendicular be ED, and to endpoint G of the mirror let DG be drawn,
and let angle BGH = angle EGD. Hence, if a given ray from center of sight
D touches endpoint G of the mirror, it will be reflected to H. Accordingly,
from H let HN be drawn perpendicular to DB. Then let another ray, DT,
strike the mirror, and let TH be drawn. Consequently, angle BTH > angle
ETD. Thus, angle GTD = angle BTK, so TK intersects HN, and likewise
all the rays that strike the mirror and are reflected from it intersect HN.
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Therefore, let a plane mirror LM be placed inside HN and parallel to mirror
GB s0 as to be struck by a ray reflected [from GB]. In that case, it is obvious
that the eye will see nothing other than whatever lies inside HN, because all
of the rays reflected [from BG] fall within HN. Therefore, let us place what-
ever image we like in front of plane [mirror] LM, and it is certain that none
[of the images] of those approaching will appear, only the aforesaid image.

Despite first appearances, such an arrangement of mirrors to produce unex-
pected images had a practical purpose: as Hero makes clear in the remainder
of the proposition, it was intended for use in temples where the effect would
presumably arouse a sense of wonder among the mass of celebrants who could
not fathom its underlying causes. Here, in short, we see technology in the

service of religion (for an equivalent case involving burning mirrors see pas-

sage 5.7 below).
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NOTES

"Definition” 3 of the Catoptrics says that “when a given perpendicular magni-
tude is viewed in a plane mirror, the straight distance between the mirror and the
viewer is to the straight distance between the mirror and the perpendicular magnitude
as the altitude of the viewer is to the altitude of the perpendicular magnitude.

2Presumably, this diopter would consist of either a narrow sighting-tube or a
narrow sighting-slit through which the line of sight could be directed as narrowly as
possible.

3This experiment could be carried out using all three mirrors at once if: 1) the
concave mirror were shorter than the plane mirror which, in turn, were shorter than
the convex mirror; 2) the axial pin were common to all three mirrors; and 3), the
colored marker slid along arc BE were tall enough to be seen in all three mirrors at the
same time. Otherwise, the experiment would have to be carried out for each mirror
in turn.

“The point is that, if they did intersect, then an object placed at the intersection-
point would necessarily be seen at two places behind the mirror along the extensions
of incident rays BC and BA.

>Since angle ORZ + angle R = two right angles, and since angle O < angle R, then
angle O + angle ORZ < two right angles, so lines CZ and AI must converge toward I
and Z (by Euclid, Elements 1, postulate 5).

6Since arc ACT > arc CTK, then angle M > respective angle X.

"This is the case treated by Hero, in chapter 9 of his Cataptrics.

8Euclid provides a specific complement to this proposition later on in proposi-
tion 24 of the Catoptrics (p. 326), where he undertakes to demonstrate that “in the
case of concave mirrors, if the eye is placed at the center [of curvature], only the eye,

by itself, appears.”
Proposition 27 of the Euclidean Catoptrics makes the same basic point as this
P P

theorem.

10These are proportional sides of similar triangles KLH and ENH. The same
applies to the next proportionality.

1Since KH: EH = KZ : ZE and KH : EH = KL : EN, then KZ : ZE = KL : EN.
But KZ : EZ = KL : EM. Thus, KL : EN = KL : EM, whence it follows that EM =
EN.

12By Euclid, Elements, I11, 7: “If on the diameter of a circle a point is taken which
is not the center of the circle, and from the point straight lines fall upon the circle,
that will be greatest on which the centre is, the remainder of the same diameter will be
least, and of the rest the nearer to the straight line through the centre is always greater
than the more remote . ..” For the full theorem, seeThe Thirteen Books of Euclid's
Elements, second edition, trans. Sir Thomas Lictle Heath, vol. 2 (1925; New York:
Dover, 1956), pp. 14-15.
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13By Euclid, Elements, 111, 21: “In a circle the angles in the same segment are
equal to one another,” so, by extension, the angles in equal segments will be equal.
For the full theorem, see Elements, trans. Heath, vol. 2, p. 49.

4The logic here is that, for all of the possible reflecting ray-couples from ZLH to
ZAH [in figure 3.16a below] or from HMZ to HGZ, centerpoint D will not be
included within the angle formed by those ray-couples. It follows that the normal
from centerpoint D to the point of reflection will invariably fall outside that angle, so
the angles of incidence and reflection (e.g., ZLA, HLM or HMG, ZML) cannot

possibly be equal relative to their repective normal, DZL or DHM.

.
|

figure 3.16a

15By the previous theorem, no reflection can occur from point Z to point H from
anywhere within arc AB nor from anywhere outside arc BK. Hence, by default, the
reflection must occur from somewhere within arc BK.

16By Euclid, Elements, V1, 3.

17See note 14 above.

181f, for instance, we choose U as the point of reflection, then, given that angle
ZUH will be bisected by normal UDC, it follows that ZU : UH = ZC : CH. Thus,
ZU, which is shorter than ZN, will be longer than UH, which is longer than NH. By
the same token, anglc UCZ, which is subtended by the supp()scdly longcr side UZ,
should be greater than angle NLZ, which is subtended by the supposedly shorter side
NZ.

9The point of this apparent excursus is to establish that, in spherical convex or
concave mirrors, the image must lie on the perpendicular passing through the center
of curvature from the object.

20In other words, the image necessarily lies along the rectilinear extension of the
incident ray.

2I'This is an empirical verification of the fact that the image lies on the cathetus of
reflection.

22This point is made explicitly in definition 4.

23This is the first definition of the book. What it means, is that, when a line is
straight, all its points lie in such a juxtaposition that, if the line were looked at end-
wise, the first point seen would block all the rest; cf. Euclid, Elements 1, definition 4.

24This point is made explicitly in definition 4.
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$Proposition 28 of Euclid’s Catoprrics takes a different approach to the issue of
image-determination. Euclid undertakes to prove there that, if the eyes are placed on
cither side of, and equidistant to, the radius of a concave mirror so that the line con-
necting them is perpendicular to that radius, and if a perpendicular is drawn to that
radius through the point bisecting it, then, if the eyes are placed anywhere between
that line and the diameter or that line itself, they will remain invisible. In both cases,
no image of either eye will be visible because there will be no intersection between the
visual ray and the cathetus of reflection—cases 1 and 5. On the other hand, Euclid
goes on to show, if the two eyes are placed between the mirror’s surface and the point
of bisection on the radius, a virtual image of the eyes will be formed, whereas if the
two eyes are placed beyond the diameter, a real image will be formed—cases 2 and 3
(see passage 3.28 below).

26Here Ptolemy is wholly at odds with Euclid, who claims that there can be no
image whatever when the cathetus of reflection and the incident ray do not meet
somewhere between the mirror and the eye or behind the mirror.

7Passage 3.3 above.

%8Notice that these “appearances” are without reference to a center of sight. Theo-
retically, of course, Z must represent the center of sight, which will then have to lie on
the actual object-surfaces.

29This proportionality follows from the fact that angle HBL = angle LBT within
triangle HBT; see Euclid, Elements, VI, 3: “If an angle of a triangle be bisected and
the straight line cutting the angle cut the base also, the segments of the base will have
the same ratio as the remaining sides of the triangle . . .” For the full theorem, see
Elements, trans. Heath, vol. 2, pp- 195-197.

30As Ptolemy demonstrates in the next theorem, line TL does not define the
actual image but, rather, its rectilinear cross-section, which indicates only its relative
size; the image itself will be convex.

31This latter claim is in fact treated not in this theorem but in the one following.

3In other words, we can assume that the entire line-image, from M, through B,

to L will be completely continuous and regular in its curvarture, as indeed will the line-
image from S, through B, to N. £

3The more sharply curved the object, then, the
less convex the image until, finally, it forms a straight
line or a concave one. Thus, in figure 3.39a, the object
is represented by the dotted curve that joins the mirror’s
surface at points A’ and G’ and passes through points T
and H. The resulting object-curve AHTG’ is sharper
than the previous object-curve AHTG. As in the pre-
vious case, so in this one, since points A’ and G’ lic on
the surface of the mirror, their images will also. So too,
the images of T and H will be formed at points N and
M respectively, and, as a consequence, the composite

image ANMG’ will form a straight line. On the other
hand, if the object-curve touches the surface even far-

figure 3.39a

ther toward points L and K yet still passes through points
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T and H, it will be more sharply curved than object-curve AHTG’. Accordingly, its
i]ﬂ:lgc Wl” l‘}L’ concave.

HIf angle CAZ > angle BZA, then, a fortiori, angle PAZ, the complement of
angle CAZ, is larger than angle BZA. Therefore, the two lines CA and BZ will inter-
sect in the direction of points A and B.

3Euclid also addresses the problem of image-inversion in isolation from the prob-
lems of distortion in propositions 11 and 12 of the Caroptrics, pp. 302-306.

361 other words, as in the case of convex mirrors (see passage 3.27 above), so in

this one, the shape of the image (i.c., convex, straight, or concave) will depend on how

sharply curved arc EBZ of the object is. Although Prolemy does not specify the fact,
it is clear that the center of sight must in this case coincide with the center of curva-
ture D. This, of course, poses an extreme limitation on the resulting conclusions.

3This follows because the resulting ray-couple MLE would not encompass
centerpoint D (see note 14 above).




SECTION IV

DIOPTRICS: ANALYSIS OF VISION BY DEFLECTED RAYS

As with reflection, so with refraction, the most fundamental problem has to
do with image-displacement—i.e., the object appears to be where in fact it is
not. Thus, the analytic goal is to reconcile such apparent position with the
object’s real position. The analogy between reflection and refraction extends

to the supposed corrective: if image-location in reflection is ultimately con-

tingent on a specific relationship (equality) between 7 (the angle of incidence)
and r (the angle of reflection), then presumably the same must hold for refrac-
tion, except that the specific relationship will not be one of equality. Accord-
ingly, in the first part of this section we will examine the dynamic model of
refraction developed by Hero of Alexandria and Ptolemy and will then look at
how, on the basis of both that model and an experimental program, Ptolemy
attempted to specify the relationship between 7 (angle of incidence) and
(angle of refraction) that governs refraction. We will proceed in the second
part of this section to Ptolemy’s account of how atmospheric refraction affects
celestial observations. The third and fourth parts, finally, will be devoted to
the analysis of image-location and image-distortion in refraction, the focus
here being upon how the apparent place and size of objects viewed through
refracting interfaces can be affected not only by the difference in density be-
tween optical media but also by the shape of the refracting surface.

1. Observation and Explanation of the Phenomenon

That an oar partially submerged in water appears to break at the water’s
surface was not only a commonplace observation but also a cause for some
wonder in antiquity. As far as optical sources are concerned, the earliest men-
tion of refraction is to be found in the Euclidean Cazoptrics. The sixth defini-
tion in that work asserts that “if some object is placed in a vessel at such a
distance [from the viewpoint] that it can no longer be seen, and if water is
poured in, then the object placed in the vessel will be seen.” Hero of Alexan-
dria also adverts to refraction tangentially in his dynamic account of refrac-
tion in the third chapter of the Catoptrics, where he treats refraction in terms
of imperfect reflection. Having likened reflection to rebound from a hard,

127
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opposing surface, he continues thus:

[4.1] In the case of water and glass, however, not all rays are reflected, for
both substances contain interstices and are composed of subtle parts as well
as of solid portions. For we see not only our own images but also objects
lying beyond in glass and water. Indeed, in marshy waters we see what is at
the bottom and through glass we see objects that lie beyond, for some of the
rays strike solid portions and, being opposed by them, are reflected, whereas
others penetrate through the interstices [and] those rays see what lies be-
yond. Accordingly, the images that are formed in such bodies are not seen
perfectly but, as has been said, some of the rays are deflected through the
interstices.

Ptolemy falls back upon much the same dynamic model to account for refrac-
tion, which he too associates closely with reflection. This point is clear in the

following passage from Oprics, V, 1-2 (p. 229):

[4.2] There are two ways in which the visual ray is broken. One involves
rebound and is caused by reflection from bodies that block the [visual ray’s|
passage and that are included under the heading of “mirrors.” The other
way, however, involves penetration and is caused by a deflection in media
that do not [completely] block the [visual ray’s| passage, and those media are
included under the single heading “transparent.”

It has been claimed earlier that this sort of bending of the visual ray does
not occur [the same way] in all liquids and rare media; what happens instead
is that in each one of these [media] the amount of deflection is determined
solely by the way in which the medium allows penetration. It has also been
claimed that the visual ray radiates rectilinearly, and such rays break only
because of an impedance posed by the surfaces separating media of different
consistency. It has also been claimed that refraction occurs not only in the
passage from rarer and more tenuous to denser media—as happens in the
case of reflections—but also in the passage from a denser to a rarer me-

dium.!

Refraction is not just similar to (or a mere byproduct of) reflection for Ptolemy,
however. It is in fact a special case of reflection, as is clear from Ptolemy’s brief
discussion of the principles that both share in Optics, V, 3 (p. 230):

[4.3] Ac this point we ought to investigate the quantitarive relationship
between the angles [of incidence and refraction] according to specific inter-
vals. Butwe should start by discussing the phenomena that such refractions
have in common with reflections. First, in either case, whatever is seen
appears along the continuation of the incident ray—i.e., along the continu-
ation of the ray that emanates from the eye to the surface at which it is
broken—[second, the object appears] on the straight line dropped perpen-
dicularly from the visible object to the surface where the breaking occurs. It
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therefore follows that, just as was the case for mirrors, so in this case, the
plane containing the broken ray-couple must be perpendicular to the sut-
face where the breaking occurs.

To illustrate the similarity between refraction and reflection in terms of the
principles governing image-location, Ptolemy offers an empirical demonstra-
tion that has clear echoes of the example offered in the sixth postulate of the
Euclidean Catoptrics quoted above. Ptolemy’s account in Optics, V, 5-6 (pp.
230-231) is given below:

[4.4] That this is clear and indubitable we can understand on its own terms
by means of a coin that is placed in a vessel called a /}(I/Jff.)‘fff'.‘z For, if the eye
remains fixed so that the visual ray passing over the lip of the vessel passes
above the coin, and if water is then poured slowly into the vessel until the
ray that passes over the edge of the vessel is refracted toward the interior to
fall on the coin, then objects that were invisible before are seen ;1!(_1[1g;1 straight
line extended from the eye to a point higher than the true point [at which
the coin lies]. And it will be supposed not that the ray is refracted toward
those lower objects but, rather, that the objects themselves are floating and
are raised up to [meet] the ray. For this reason, such objects will be seen
along the continuation of the [incident] visual ray, as well as along the nor-
mal dropped [from the visible object] to the water’s surface—all according
to the principles we have previously established.

[EXAMPLE V.1] Now, let us suppose that point A [in figure 4.1] is the
eye, ZHE the common section of the plane containing the refracted ray-
couple and the surface [of the water] i\
in the vessel, and ABD the ray passing

over the vessel’s lip at B. Let us also

suppose that there is a coin at G, which E{ L

lies toward the bottom of the vessel.
Then, as long as the vessel remains
empty, the coin will not be seen, be-
cause the body of the apparatus at B
blocks the visual ray that could proceed
directly to the coin. Yet, when just figure 4.1
enough water is poured into the vessel

so that its surface reaches line ZHE, ray ABH is deflected along line GH,
compared to which AH[D] is higher. In that case, then, the coin will appear
to be located along the cathetus dropped from point G to EH—i.e., cathetus
LKG, which intersects line AHD at point K. Moreover, its image-location
will lie on the radial line passing from the eye and continuing rectilinearly to
point K, that radial line being higher than the actual ray [HG] and nearer
the water’s surface; so the image will appear at point K.

While reflection and refraction share most of the same principles of image-
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location, there is one principle that definitively separates them: whereas in
reflection the angles of incidence and reflection are equal, in refraction this is

clearly not the case. Yet, as Prolemy claims at the end of Optics, V, 2, even

though “this breaking does not take place at equal angles, . . . the angles [of
incidence and refraction] do bear a certain consistent quantitative relation to
one another with respect to the normals.” What might that “consistent quan-
titative relation” be? To answer this question, Ptolemy proposes a series of
experiments to determine precisely how the angle of refraction varies with
respect to the angle of incidence. The first experiment, which is described in
Optics, V, 7-11 (pp. 231-233), involves refraction from air into water:

[4.5] The amount that the ray is refracted in water below the [original line
of] sight is determined according to the following experiment, which is con-
ducted by means of the bronze plaque that we constructed for analysing the
phenomena of mirrors.

[EXPERIMENT V.1] Let circle ABGD [in figure 4.2] be described on
that plaque about centerpoint E, and let the two diameters AEG and BED
intersect one another at right angles. Let A
each of the [resulting] quadrants be di-
vided into 90 equal increments. At the
centerpoint let a small marker of some
color or other be attached, and let the

plaque be stood upright in the small ves-
sel [discussed in the previous experi-
ment]. Then let a suitable amount of

water that is clear enough to be seen

through be poured into that vessel, and Thas
let the marked-off plaque be placed erect
at right angles to the surface ofrhe‘waw Biglive 43
ter. Let all of semicircle BGD of the
plaque, but nothing beyond that, lie under water, so that diameter AEG is
normal to the water’s surface. From point A, let a given arc AZ be marked
off on either of the two quadrants that lie above the water. Furthermore, let
a small, colored marker be placed at Z.

Now, if we line up both markers at Z and E along a line of sight from
either eye so that they appear to coincide, and if we then move a small, thin
peg along the opposite arc GD under water until the end of the peg, which
lies upon that opposite arc, appears to lie directly in line with the two previ-
ous markers, and if we mark off the portion of the arc GH that lies between
G and the point at which the object would appear unrefracted, the resulting
arc will always turn out to be smaller than AZ. Moreover, if we join lines ZE
and EH, angle AEZ > angle GEH, which cannot be the case unless there is
refraction—that is, unless ray ZE is refracted toward H according to the
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excess of one of the opposite angles over the other.

Furthermore, if we place our line of sight along normal AE, we will find
the image directly opposite along its rectilinear continuation, which will
extend to G; and this [radial line] undergoes no refraction.

In the case of all the remaining positions, when arc AZ is increased, arc
GH in turn will be increased, and the refraction will be greater. When arc
AZ is 10 degrees out of the 90 into which quadrant [AB] is divided, then arc
GH will be around 8 dcgrccs.{* When AZ is 20 degrees, then GH will be
15.5. When AZ is 30 [degrees], then GH will be 22.5. When AZ is 40
[degrees], then GH will be 29. When AZ is 50 [degrees], then GH will be
35. When AZ is 60 [degrees], then GH will be 40.5. When AZ is 70
[degrees], then GH will be 45.5. And when AZ is 80 [degrees], then GH
will be 50.

The second experiment, which involves refraction from air to glass, is

scribed in Optics, V, 14-18 (pp. 234-236):

[4.6] [EXPERIMENT V.2] Let a clear glass semicylinder, represented by
arc TKL [in figure 4.3] be made in accordance with the semicircular section
of the round plaque, but let its diameter be smaller than the diameter of the
aforementioned bronze plaque. Then let
its base be attached to the plaque so that
both are completely joined. Let its center
be E, and let its diameter TL coincide with
[the plaque’s] diameter BD, and let AE be

perpendicular to the flat surface of the glass.
Therefore, every line drawn from point E
to arc BGD and to arc TKL will be normal

[to those arcs]. 2

G

Accordingly, if we set up this experiment
as we did before, and if we make a small
mark on the mid-point of the semicylinder’s figure 4.3
surface where it[s axis] touches point E, and
if we look with cither eye along line AE toward the edge of the glass and
move a marker on the arc [BGD] opposite this arc [BAD] until it appears in
front of it, it will be found to lie on G itself. For line AEG is normal to both
TEL and TKL. And if we move our eye until it lies directly in line with this
position, and if we look along line GE so that the marker that has been
moved along the arc lies directly in line with GE, then that marker will be
situated on line EA. For the same reason, moreover, there will be no refrac-

tion in the passing of the ray [orthogonally] from glass into air.

But if we take some given arc AZ from point A and draw line ZE, color-
ing it black, and then if we sight along this line until the marker, which is
moved behind the glass, appears to fall in line with it, and if we mark the
place—e.g., point H—where we found it so that the black color coincides
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with EH, then we will also find in this case that angle AEZ > angle GEH.
We will also find that the angular difference is greater than the angular dif-
ference in water, where the arc [measuring incidence] was the same.

If, moreover, we station our eye at point H, which is opposite point E,
and sight from point H along HE, [both of the points] E and Z will appear
to coincide on one and the same line of sight. And since there appears to be
a refraction of the ray in this situation, it is necessary that, whether the ray
passes from air into glass, as represented by ZE, and is refracted along EH,
or whether it passes from glass to air, as represented by HE, and is refracted
along ZE, the refraction takes place toward T.> And since the normals
dropped from E to TKL are the same, rays [that pass along them] are not
refracted, whether they pass from E to K or from K to E.

In addition, if we now analyze the amount of refraction for each of [the
previous angular] positions, we will find that, when the eye is placed at the
same angular distances as before and when the angle measured from point E
(i.e., the angle [of incidence] formed by normal AE and ray EZ) is 10 de-
grees of the ninety ascribed to the circle’s quadrant, then the [resulting] angle
[of refraction] GEH will measure nearly 7 degrees. When the first angle is
20 degrees, the second will be 13.5. When the first is 30 [degrees], the
second will be 19.5. When the first is 40 [degrees], the second will be 25.
When the first is 50 [degrees], the second will be 30. When the first is 60
[degrees], the second will be 34.5. When the first is 70 [degrees], the second
will be 38.5. And when the first is 80 [degrees], the second will be 42.

The third and final experiment involves refraction from water to glass. It is

described in Optics, V, 20-21 (pp. 236-237):
(4.7] [EXPERIMENT V.3] Let the glass semicylinder [in figure 4.4] be

attached to the bronze plaque and let it be set up so that its center coincides
with the center of the plaque. Let point E be colored somewhat, and let the
plaque be set up in the basin at right angles A

3 a . . . . /——\
to the water’s surface, which coincides with K \
the plaque’s [horizontal] diameter, and let
the curved surface TKL of the glass

[semicylinder] be arranged such that it lies

above [the water’s surface]. Then, let wa-
ter be poured into the basin just until line
TEL of the semicylinder coincides with the
water's surface. Within the rarer medium

(i.e., water) let some arc GH be marked G

off, and again let it be 10 degrees. Let some

thin colored marker be placed at H, and figure 4.4

sight with either eye [along HE] until

marker Z, which is moved on arc AB, appears to lie in line with point H and
the colored spot at E. With things so disposed, let the two lines EH and EZ
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be drawn.

If, then, we take the angle formed in the denser medium (i.e., in glass),
that angle being designated on arc AB, we will find by means of this experi-
ment that, when the angle in water as measured from the normal—namely,
angle GEH—is ten degrees of the ninety ascribed to a right angle, the [re-
sulting] angle in the glass—namely, angle AEZ—is nearly 9.5. When the
angle in water is 20 [degrees], the angle in glass will be 18.5. When the
former is 30 [degrees], the latter will be 27. When the former is 40 [de-
grees], the latter will be 35. When the former is 50 [degrees], the latter will
be 42.5. When the latter is 60 [degrees], the former will be 49.5. When the
latter is 70 [degrees], the former will be 56. And when the former is 80
[degrees], the latter will be 62.6

With the cxpcrimcnm] evidence Fu”y prcscmc(i, I’m]cmy 1S pl‘(’p;ircd to make

some generalization about refraction in Optics, V, 31-35 (pp. 242-244):

[4.8] It is, however, possible to formulate in such a way a general claim
about refraction on the basis of previously established points. We put it
thus: the amount of refraction is the same whichever the direction of pas-
sage; the difference is one of kind [rather than of degree]. For in passing
from the rarer to the denser medium, the ray inclines toward the normal,
whereas in passing from the denser to the rarer medium, it inclines away
f‘[()m fhc Ijl()['f]]ﬂ].?

[EXPERIMENT V.4] In fact, if we set up the plaque as before and
assume that diameter BD [in figure 4.5] lies on the interface between the
two different media, and if we draw normal AEG as well as the refracted ray-
couple ZEH inclined toward the normal,
with which it forms angle GEH, then the
path of refraction remains one and the
same. In fact, when the visual ray passes
through point E, and the eye is stationed
at point Z, the line [of sight] after refrac-
tion—i.e., line EK—inclines toward the

normal according to its continued passage

[along EH] while the visible object is seen
along the rectilinear continuation [EK].
But if the eye lies at point H, and EZ lies figure 4.5
within the rarer medium delimited by
ABD, then, after refraction, line EL will take an opposite tack from that
previously specified, inclining away from normal AE [along EZ] in such a
way that it lies farther out [from the normal] than would the visual ray if it
were to continue in a straight line.

Furthermore, when the media and the angles differ from one another by
a significant amount, the difference [between the angles of incidence and

refraction] increases as the density of either of the media grows. Indeed, if
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we assume that arc BAD lies in the rarer medium and arc BGD in the denser,
and if we take angle AEZ as it is represented, then, when the medium within
section BGD becomes denser than it previously was, the difference between
langle AEZ and] angle GEH will vary with the difference in density be-
tween the two media. In fact, when angle AEZ is 30 degrees in air, angle
GEH in water will be nearly 22.5 degrees, whereas in glass it will be nearly
19.5 degrees. And in this latter case the refraction and difference in angles
measured from the point at the top [of the normal] will be greater, because
the substance of glass is denser than the substance of water.

So too, if we suppose that the refraction of another of the visual rays takes
place at some other arcal distance [than AZ] from normal AE—e.g., along
ray-couple TEK—then AT : AZ > GK : HG. By alternation, AT : GK > AZ
: GH. By separation, TZ : AZ > KH : GH. And [by alternation,] TZ : KH
>AZ : GH.® Furthermore, we can determine particular cases on the basis of
the refractions as we measured them if we take the resultant numbers and,
on their basis, investigate particular measurements of this sort, substituting
the numbers so derived for the two arcs AZ and AT.

But someone might object by demanding an explanation for why, in
light of the first principles laid out concerning normals and the appearance
of the visible object along the straight continuation of the [incident] visual
ray, the sort of breaking that we have discussed is similar to the breaking that
occurs in mirrors, whereas the angular relationships are not, for in the case
of refraction the equality of angles is not conserved. It will be seen in re-
sponse that this must bethe case according to what we have explained, on
which basis an even more marvelous fact will be apparent: namely, the course

. . . . - C
()f naturc in L‘(H“l.\L'T\"lllg [llC CXCErcise ()[ P()\VL‘I’.)

Suffice it to say that the governing principle of refraction formulated by Ptolemy

in the penultimate paragraph is extraordinarily weak, amounting to little more
than the generalization that, in refraction from a given rarer to a given denser
medium, as 7 increases, so does the difference berween successive #s—which is
to say that, as 7 decreases, 7and i approach equality. There is, in fact, a specific
mathematical law implicit in Ptolemy’s tabulations, but its proper formula-
tion in algebraic terms would have been beyond Ptolemy given the limitations
of mathematical notation in his day.1?

2. Practical Application: The Problem of Atmospheric Refraction

The Effect on Observed Position: According to the cosmology of Prolemy’s
day, the universe can be thought of in terms of concentric spheres, at the
center of which lies the earth with its oceanic covering. That sphere is sur-
rounded by a spherical sheath of air, which is enveloped in its turn by fire.
Beyond that lies ether, the stuff of the celestial realm, whose inner edge is
demarcated by the lunar orbit. Ptolemy’s explanation of atmospheric refrac-
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tion and its effect on celestial observation is to be found in Oprics, V, 23-30

(pp. 238-242):

(4.9] Furthermore, it is possible for us to realize that, at the surface between
air and ether, there is a refraction of the visual ray according to the difference
in density between these two media. The resulting phenomena are as fol-
lows:

We notice that [celestial] bodies that rise and set tend to incline toward

the north when they are near the horizon and are measured by an instru-

ment for measuring the stars.!! For, when they lie to the east or west [i.e., at

rising or setting], the circles drawn through them parallel to the equator are
nearer to the north than the circles drawn through them when they are in
the middle of the sky, and the more they approach the horizon, the more
they are inclined to the north. Moreover, the distance from the north pole
of the stars that are always visible [i.e., that do not set] will always be less
when they lic on the meridian toward the horizon. For when they are on the
meridian in a location that is closer to the zenith, the circle at that location
that is parallel to the equator becomes larger, whereas in the previous posi-
tion it becomes smaller.12 This is a result of the refraction of the visual flux
at the surface that separates the air and the ether, a surface thar must be
spherical, its center being the common center of all the elements, which is

the center of the earth.

[THEOREM V.1] First, let E [in figure 4.7] represent the viewer’s ze-
nith, and let one of the great circles on the spheres of the aforesaid elements
cut the earth along AB. Let GD be a great circle on the interface between
the air and ether, and let EZ be a great circle passing through a given star,
and let the center of all the circles be point H. Let line EAH be drawn. Let
point A be the eye and line ADZ a line coinciding with the common section
of the [plane of the] horizon and circle GD. In addition, let DT be normal
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to the circle[s]. Let us suppose that ADK is a visual ray refracted along KD
at point D, and let the star lie at point K.

Since the visual ray is refracted at the interface toward a position away
from point E according to the normal dropped at equal angles to the refract-
ing surface, angle KDT [of refraction], which lies in the subtler medium,
will be greater [than angle ADB of incidence]. Thus, the star will be seen
from point A along line ADZ, and its [apparent] distance from the zenith
will be less than its true distance, for it will be seen along arcal distance EZ
instead of arcal distance KE. Therefore, the higher its distance [toward the
zenith], the smaller the difference between the star’s apparent and true loca-
tion. And if the star is at E, there will be no refraction, because there is no
breaking of the visual ray that passes from point A to point E, for in that case
it will be normal to the surface of refraction.

[THEOREM V.2] With these points established, let ABG [in figure
4.8] represent the circle of the horizon and AEZG the semicircular arc of the
meridian that lies above the earth. Let point E represent the zenith and
point Z the apparent pole of the heavenly sphere [of fixed stars]. Let BHD
be the arc of a line above the earth’s surface that is parallel to the equator and
that passes through certain stars.!3 Let T be a star that lies on this line near
the horizon, and let KETL be the semicircular arc of the circle that passes
above the earth through the zenith and through star T.

Accordingly, since the star appears to lie nearer the zenith than it truly is

D

N

o

figure 4.8

when it is near the horizon, and since the divergence in its apparent from its
true position is measured on the great circles passing through the points on
the horizon, the point where the star that is [actually] at T appears will lie
between E and T, such that it appears at point M. Moreover, the line paral-
lel to the equator and passing through point M, will lie higher to the north
than the line parallel to the equator and passing through point T, which at
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our particular latitude is inclined toward the north. And when the star rises
to position H, it reaches a point where the visual ray is refracted without any
perceptible difference between apparent and true location. !4

Likewise, if we suppose Z to represent the north pole and if we draw one
of the circles parallel to the equator that is always visible [at our latitude],
e.g., circle NSF, then, when the star lies at point S on this circle, it will
appear closer to point E, which lies at the zenith, and it will seem to lie at
point O. But when the star is at point N, then there is no difference, or only
an imperceptible one, between apparent and true location.!> And therefore,
when a star approaches the horizon in its revolution, its distance from the
north pole of the [celestial] sphere appears to be smaller [than it really is];
but when it approaches the zenith in the course of its revolution, that appar-
ent distance seems larger, for arc ZN will be larger than arc OZ.

It has thus been demonstrated how stellar observation must be affected
by the refraction of the visual ray. It would also be possible for us not only to
examine the degree of such refractions, but also to analyze such refraction in
the case of certain [celestial] bodies whose distance is given—e.g., the sun
and the moon—and to determine the degrees [of refraction] toward the
horizon as well as the amount by which the refraction of the visual ray shifts
the apparent position upward if the distance of the interface between the

16 By, although this distance

two media [i.e., air and ether] were known.
lies nearer than the earth to the lunar sphere, where the ether stops, it is not
known whether the [refractive] interface lies at the same distance as the afore-

said surface, or whether it lies nearer the earth, or whether it lies farther from

[the aforesaid] surface.!” Therefore, it is impossible to provide a method for
determining the size of the angles of deviation that occur in this sort of
refraction.

Despite Ptolemy’s clear articulation of the problem of atmospheric refraction,
it was not until the very end of the sixteenth century that astronomers made
serious efforts to determine the effect of that refraction on celestial observa-
tions.

3. Image-Location as a Function of the Shape of the Refracting Surface

As in reflection, so in refraction, image-location is affected by the shape of
the refracting interface. Prolemy offers an analysis of this effect for plane,
spherical convex, and spherical concave refracting surfaces in Optics, V, 56-63

(pp. 251-253):

[4.10] At this point, we want to demonstrate how the cathetus dropped
from the visible object to the aforesaid [refracting] surface intersects the re-
fracted ray.

[THEOREM V.8] To start with, let the [refracting] surface be plane,
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and let straight line ABG [in figure 4.10] represent the common section of
that surface with the plane containing the refracted ray-couple. Let D be
the eye and DBE an oblique ray. Draw normal ZBH to point B on AB, and
let DB be refracted toward the normal along BT, on the one hand, and away
from the normal along KB, on the other. Let the visible objects lie at T and
K, and from them let the two catheti KL and TG be dropped to BG. They
invariably intersect line DB, for angle ABE is larger than a right angle, while
the angles at G and L are right.

B,

T

figure 4.10 figure 4.11

The unstated but obvious conclusion of this demonstration is that the image
of T will appear at the juncture of BE and GT, whereas the image of K will
appear where the extensions of LK and BE intersect.

[THEOREM V.9] Now, let the surface of refraction [in figure 4.11] be
spherical, [let its center be H,] and let its convex surface face the eye. Let D
be the eye, and let [incident ray] DBL be drawn.

Accordingly, catheti, such as KH, that are drawn to any of the visible
objects placed on KB between Z and H!® invariably intersect BL. However,
catheti, such as TH, that are drawn to such objects and that intersect BT
and ZH, will sometimes be parallel to DBL, sometimes intersect it in the
direction of T and L, and sometimes diverge from it. For it is possible for
angle HTB to be at times equal to angle LBT, at times greater than it, and at
times smaller than it.

The point of this demonstration is that the image of an object immersed in a
rarer medium will always be seen, because the cathetus dropped from the
object to the center of curvature will always intersect the continuation of the
incident ray. On the other hand, if the medium within ABG is denser so that
the visual ray refracts toward normal BH, an image may or may not appear,
depending upon whether the cathetus TH intersects the continuation of inci-
dent ray DB or not.

[THEOREM V.10] Now, let the concave surface face the eye, which lies
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at any one of the two positions [between the center of curvature and the
surface or beyond the center of curvature]. Let ray DBL [in figures 4.12a
and 4.12b] be drawn, and let the visible objects be assumed to lic on BT and

KB.

According to both positions for the eye, then, the cathetus TG dropped

D

figure 4.12a figure 4.12b

from the visible object on BT will intersect ray BL. But the cathetus KM
dropped from any of the visible objects on KB will sometimes be parallel to
line DBL, sometimes intersect it on the side of K and L, and sometimes

diverge from it. For angle KBL can sometimes be equal to angle BKE,
sometimes larger than it, and sometimes smaller than it, depending on the
distance [along BK from the point of refraction] of the object seen at K.

In this case, moreover, it is possible that the aforementioned lines—i.e.,
the refracted ray and the cathetus dropped from the visible object to the
refracting surface—do not meet and [therefore] that there will be no deter-
minate image-location. This is possible when the refracting surface is spherical
and its convex surface faces the eye, which lies in the rarer medium, or when
the concave surface faces the eye, which lies in the denser medium.

In every other case, though, the lines we have designated alway intersect.
But when they do not intersect, the visual faculty is affected in the same way
that it is in the case of mirrors in regard to the intersection except that the
location where the image is formed will not be determinate but is shifted to
the common intersection of the normal and the refracting surface, and it
takes on the image of the visible object and will coincide with it in location
and in the transparent medium.

From the above account it is clear that Prolemy is constrained by his visual
model to assume that, whenever the ray actually reaches an object, the object

must somehow be seen. As a result, he is forced to temporize by supposing

that, at times, the “image” is confused with the surface of refraction and thus
takes on its visible qualities.
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4, Size-Distortion

The most obvious form ()f\im;lgc—dismrli(m in refraction involves the mag-

nification of objects when they are viewed through water or glass. This effect

was recognized at least a century before Prolemy wrote his Oprics and was

drawn on to explain why celestial bodies appear so much larger at the horizon
than they do at zenith. The explanation itself rests on the assumption that the
vapor-laden atmosphere acts like a vessel of water through which celestial bodies
appear larger than they are. This magnification-effect is most pronounced at
the horizon, where the angle of incidence for the visual ray is greatest and,
consequently, where the depth of atmosphere traversed by the ray is greatest.

Thus, as Prolemy summarizes the explanation in Almagest, 1, 317

[4.11] The apparent increase in [che sizes of celestial objects] at the horizon
is caused, not by a decrease in their distances, but by the exhalations of
moisture surrounding the earth being interposed between the place from
which we observe and the heavenly bodies, just as objects placed in water
appear bigger than they are, and the lower they sink, the bigger they appear.

Later, in his Planetary Hypotheses, and even later in the Optics (III, 59 [p.
151]), Ptolemy shows that he has become fully aware that the apparent en-
largement of celestial objects at the horizon (the so-called Moon Illusion) is
only apparent and thus due to psychological rather than physical causes.

Although Ptolemy’s attempt in the A/magest to explain the Moon Illusion
on the basis of refractive distortion was badly misguided, that explanation
nonetheless reveals Ptolemy’s awareness that refraction causes size-distortion.
By the time he composed the Oprics, in fact, he had a clear understanding that
such size-distortion is due to image-displacement and, moreover, that such
displacement is a function of the difference in density between optical media.
Accordingly, he starts in Optics, V, 70-72 (pp. 255-256) with the case of a
point-object viewed in a denser medium, such as water:

[4.12] [THEOREM V.11] Letstraight
line ABG [in figure 4.13] be the com-
mon section of the water’s surface and

the plane containing the refracted ray-

Cuuplc. Let D be the eye, let ray DB be
drawn, and let normal ZBH pass
through point B. Let ray DB be re-
fracted along BT toward the normal, as
happens when the eye lies in the rarer
medium. Then, let [cathetus] TKG be
dropped normal to AG from point T. figure 4.13
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Accordingly, an object that lies at point T will be seen at K. And since
lines DB and BT taken together are longer than line DBK (for angle BKT is
obtuse), the distance of the visible object’s image will be less than that of the
object itself.

If, moreover, we draw BTL and place the visible object at L, and if from
that point we draw [cathetus] LMN normal to AG, the image of L will lie at
M, and the image that appears at point M will lie farther away than the
image that appears at point K. But it will not just lie farther away; it will do
so according to a particular mathematical relationship that is proper to it.
Thus, since TG and LN are parallel and lie on a plane, MN : KG = MB : KB
=LB: TB. And so, MN : KG = LB : BT.

Prolemy then turns in Optics, V, 74 (p. 256), to the opposite case: a point-

object viewed in a rarer medium, such as air.

[4.13] [THEOREM V.12] For if we assume refracted ray BTL [in figure
4.14], which forms an angle [of refraction] LBH greater than angle [of inci-
dence] DBZ, then the ratios of the distances will remain constant to one
another. For the ratio of distance L[B] to distance T[B] will be the same as
the ratio of distance M[B] to distance K[B]. But in each case, the relation-
ship is the inverse [of that in the previous demonstration]. For the location
of T, which represents the visible object itself, will be nearer than [that of]
its image K, just as the location of L will be nearer than [that of] its image

M.

figure 4.14 figure 4.15

Moving from point-objects to lengths in Optics, V, 76-78 (pp. 257-258),
Ptolemy explains the overall magnification caused by refraction in terms of
the size of the visual angle under which the image is seen:

[4.14] [THEOREM V.13] Let the two rays DA and DG [in figure 4.15] be
drawn from the eye at D to line GA, and let them flank the normal DBE.
Then let them be refracted so as to flex apart from the normal along AZ and
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HG, and let them comprehend some magnitude represented by the line
connecting the two endpoints of magnitude ZEH. Finally, let lines DZ and
DH be joined. It is therefore evident that angle ADG > angle ZDH, be-
cause the refracted rays lie farther from the normal [than the continuation of
the incident rays along DZ and DH]. And [so], ZH will be seen under a
larger angle [than otherwise], assuming that the distance and disposition [of
the magnitude] remain constant.

For this reason, then, objects that are submerged in water must invari-
ably appear larger than they would if they were observed according to direct
vision at the same distance and in the same disposition.

[THEOREM V.14] But, assuming that the situation is the reverse of that
just specified, let us suppose that rays DA and DG [in figure 4.16] are re-
fracted away from the normal, as happens when the eye is situated in the
denser medium. Thus, if we join lines DZ and DH, angle ZDH > angle

ADG. And so the actual object must appear larger than its image.

D

E
figure 4.16 figure 4.17

Having determined that the amount of magnification is due to the increased

size of the visual angle under which the image is seen, and having also deter-

mined that the fundamental cause of such magnification is the upward dis-
placement of the image, Ptolemy concludes in Optics, V, 80-82 (pp. 258-
259), that, in the case of refraction through a plane interface, the image ap-
pears to be precisely the same shape as its generating object:

[4.15] [THEOREM V.15] ... If ray-couple DAE [in figure 4.17], ray-
couple DBZ, and ray-couple DGH are cach refracted toward magnitude
EZH, and if catheti of refraction ET, ZK, and LH are dropped, while lines
DAM, DBN, and DGS are connected, then the image of line EZH will lie
on the line passing through points M, N, and S. Also, TM : KN = ET : ZK,
while KN : SL=KZ : LH, and TM : SL = ET : LH.

The same will hold as well for every type of disposition. For if segments
TE, KZ, and LH define the observed line EZH as a straight line, then seg-
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ments MT, KN, and SL define the ob-

served [image]-line as a straight line. On

the other hand, if the former segments

define the observed line as convex, the lat- K A G L

ter segments define the observed image as B

convex. Finally, if the former segments / \
Z

define a concave line, the latter define the

observed image as concave.

As is represented by the figure [4.18],

moreover, this is the case whether we sup-
pose the refraction to occur in the direc-

ﬁgure 4.18

tion of, or away from, the normal.

Even the most cursory glance into a moderately large flat-bottomed container
filled with water will show the basic conclusion of this theorem to be false:
since the bottom in fact appears concave, it is clear that the image does not
have the same shape as its generating object. Indeed, Ptolemy’s procedure for
determining the image-location of point-objects should have led him to con-
clude that M is projected somewhat higher than N, so that, all told, the image
of that portion of EH left of midpoint will incline constantly upward as the
line of sight moves ever outward. The source of Ptolemy’s error, of course, lies
in the false precision of the three proportionalities, TM : KN = ET : ZK, KN
: SL = KZ: LH, and TM : SL = ET : LH. The simplicity of the resulting

model apparently seduced Ptolemy into jumping to a conclusion that was

inconsistent with his own principles.
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NOTES

'"This paragraph is rife with implications. First, it is evident that Prolemy sees a
fundamental relationship (direct proportionality?) between the density of a given trans-
parent medium and the amount of impedance it poses to the passage of visual rays.
Second, Prolemy seems to believe that the amount of deflection or refraction of such
rays is fundamentally related (in direct proportionality?) to the amount of impedance
posed by the given medium. Thus, we are led to conclude a fundamental relationship
(direct proportionality?) between density and amount of refraction. The problem, of
course, is how to gauge “density” in this account. Should we somehow take it as
physical, so that it measures the relative amount of matter contained in a given vol-
ume? Ifso, what is the relative density, for instance, of glass to water? Worse, why are
so many opaque objects less dense than transparent ones? In view of these kinds of
issues, we should be chary of assuming that Ptolemy has a true model for refraction in
mind. Perhaps all he means to convey is a vague sort of analogy.

*From later discussion in book V, we know that the baptistir to which Prolemy
refers consists of a hollow semicylinder whose ends are closed off so that it can hold
water.

3See passage 3.3 above.

4The qualifer “around” in this context suggests that Ptolemy was self-consciously

rounding his results off—to the nearest half degree as it turns out.

*Here, for the first time, Prolemy explicitly articulates the principle of recipro-
city: i.e., no matter the direction of passage in refraction (or, for that matter, reflec-
tion), the ray-couple remains fixed, with the incident and refracted rays interchange-
able.

®It is worth pausing at this juncture to discuss the methodological implications of
these experiments. To facilitate that discussion I will tabulate the results for all three
refractions, 7 being the angle of incidence and 7 being the observed angle of refrac-
tion, both measured with respect to the normal:

air to water air to glass water to glass
i r i r i i

10° 8.0° 102 7.0° 10° 9i5=

20° 15.5° 202 352 20° 18:5°
30202259 302 1955 30" 27.02
402 290° 40°  25.0° 40° 35.0°
507 " 35.0° 50°  30.0° 50° 42.5°
60°  40.5° 60% © 34.5° 60° 49.0°
7O 45.5° 7O 38.5° 70° 56.0°
80°  50.0° 80° 42.0° 80° 62.0°

The most obvious characteristic of all three sets of tabulations is that they are not
“raw;” clearly, Ptolemy has rounded them off to the nearest half-degree, presumably
because of the limits of observational accuracy. Only a little less obvious is the fact
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that they all follow a pattern. Let us take the tabulations for refraction from air to
water as an example. First, in comparison to the proper values for the angles of refrac-
tion as computed on the basis of the sine law (sine 7 : sine 7 is constant for refraction
between any two given media), Prolemy’s values are relatively accurate for all values of
1 except for the last value—i.e., 7 = 80. Second, the structure of the tables indicates
that, along with recognizing the inexactness of his brute observations, Ptolemy had a
specific algorithm in mind: namely, that the progression of values for r depends on
constantly decreasing increments, the rate of decrease being constant at half a degree.
If, however, r were to vary constantly with 7, then the progression of values would be
as follows: when 7 = 10, » = 8; when 7 = 20, r = 16; when 7 = 30, r = 24, etc., the
difference in successive values being 8. As tabulated by Prolemy, though, the succes-
sive values are continually decreased by half a degree so that the resulting values for »
become 8; 8 + 7.5 (= 8 -.5) = 15.5; 15.5 + 7 (7.5-.5) = 22.5, etc. The numbers in
italics represent what are called “first differences.” Thus, as 7 increases from 10 to 80,
the first differences decrease continually. But in fact those differences decrease by a
constant amount of half a degree, which are represented by the numbers in bold-face
type. These increments of half a degree are called “second differences.” Hence, at
bottom, Prolemy was adjusting his results according to an algorithm of constant sec-
ond differences, an algorithm that was commonly used in late Babylonian astronomy
for generating astronomical tables. In short, Prolemy was drawing upon his astro-
nomical background to address this particular computational problem.

"Here, and in the following paragraph, Prolemy is simply generalizing the claim
about reciprocity made above in passage 4.6, paragraph 4.

8n essence, this entire series of ratios expresses the fact that the difference be-
tween successive #s increases more slowly than the difference between successive re-
sulting s, or, to put it another way, r approaches 7 as 7 approaches 0°.

Unfortunately, this extraordinarily suggestive point is not followed up in the
remainder of the text as we now have it. It is tempting to think that Ptolemy has in
mind some sort of principle of conservation, either dynamic or kinematic, that gov-
erns the angular relationship between 7 and 7.

0T he precise law implicit in Ptolemy’s data can be formulated thus: if 7 = #/10,
R = n x the value of r for i = 10° and 42 = the second difference = .5° then for any
given 7, r= R - n(n-2)d2/2.

"Presumably what is being referred to here (by Ptolemy or one of his translators,
whether Arabic or Latin), is an astrolabe, or something akin ro it, that measures the
latitude of celestial bodies.

2According to Prolemy, then, the apparent latitude of the stars changes con-

stantly as they rise higher in the sky toward the zenith in their nocturnal round, even
though their actual latitude remains constant. For instance, let line EW [in figure
4.6] represent the horizon-line, with E marking the eastward side and W the west-
ward side. Let the dotted line pointing toward N (= North) represent the meridian
line, and let arc AB represent the path of a given star. The observer’s line-of-sight will
therefore be along the perpendicular dropped from a point above the plane of the
diagram to the intersection of horizon-line EW and the meridian line. Now, accord-
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figure 4.6 figure 4.9

ing to Prolemy’s account, while the star is still below the horizon at position 1, it will
appear above the horizon at counter-position 1 because of atmospheric refraction,
which causes the star, being in a rarer medium (i.e., ether), to appear to “float” above
its actual position (see passage 4.4 above). Thus, the projection of its apparent lati-
tude or orbit (along the dotted line) describes a circle lying above—i.e., to the north
of—its actual circle of latitude. Likewise, as it progresses along its actual orbit from 2
to 5, refraction causes the apparent position to lie farther north than the real one, but
the amount of refraction diminishes continually as it rises higher in the sky. Thus, the
dotted circles of apparent latitude or orbit constantly approach the actual circle of
latitude or orbit until the star reaches zenith (point 5), where no refraction occurs and
where the apparent orbit has reached as far south as possible. Then, and only then,
will the projected circle of latitude or orbit coincide with the actual one. Moreover,
the farther north the circles of latitude lie, the smaller they necessarily are in compari-
son to the great circle of the equator.
13In short, BHD represents a line of latitude.

4In other words, point M represents one of the intermediate positions (2-4) of

the star in figure 4.6, note 12 above, whereas E represents position 5 in that figure.

15That is, when the star is at S and therefore closest to the horizon in relation to
zenith-point E, the ray that reaches it will be maximally refracted. Consequently the
apparent location of the star will be shifted northward as much as possible. On the
other hand, when the star is at N, it is closest to zenith-point E and, therefore, to the
point at which refraction is minimal. Hence, its northward shift will be the least
possible.

16The amount of refractive displacement in this case will depend upon two basic
factors: 1) the actual refractive power of the denser medium (air) relative to that of
the rarer one (ether), and 2) the depth of the denser medium. Prolemy seems to be
citing the distance of the bodies in question as another factor, but in fact, the actual
eye-to-object distance has virtually no effect on refractive displacement (perhaps by
“distance” he means actual latitudinal distance with respect to the equator at any
given point along the known orbit of the body). All of this can be graphically ex-
plained by recourse to figure 4.9, which is adapted from figure 4.7 above. Let arc
ABB’ represent an arc on the earth’s surface, with H as its center and A as the view-
point. Let the two arcs through D and D’ represent two possible interfaces between
air and ether, and let HBDT and HB’D’T’ be the respective normals to those inter-
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faces. Finally, let ADD’Z represent the horizontal line-of-sight. From the diagram,
then, it is clear that, for the nearer interface, a given body K will be displaced upward
by refraction farther than a body K’ viewed through the farther interface. It is also
clear that any body along line DK will have the same angular displacement, no matter
its actual distance along that line. Note, finally, that the farther out the refractive
interface lies, the smaller the amount of refraction; indeed, there is a point at which
the refraction is minimized to imperceptibility.

17This passage is confusing, because it seems to imply the possibility that the air-
ether interface might lie beyond the lunar sphere, which is a patent absurdity given his
carlier recognition that the moon is one of the bodies of known distance whose appar-

ent location is affected by refraction. According to Aristotelian cosmology, however,

the air-ether interface cannot possibly lie below the lunar sphere, since that sphere
defines the lowest limit for ether. Also, according to that same cosmology, there is a
sphere of fire separating air from ether, yet that sphere goes unmentioned.

18This specification, “between Z and H,” is at best irrelevant and at worst inco-
herent.

YFrom G. ]. Toomer, trans., Prolemys Almagest (New York: Springer Verlag), p.
39.







SECTIONV
ANALYSIS OF THE RAINBOW AND OF BURNING MIRRORS

As mentioned in the introduction, the analysis of the rainbow seems not to
have been integral to the science of optics in antiquity—at least as that science
is currently represented in the rather paltry textual tradition that is currently
available. The only significant study of the rainbow that survives from that
period, in fact, is Aristotle’s account in the Meteorology, which is a work de-
voted not to optics but to what were, or were presumed to be, atmospheric
phenomena (including comets). Whether the survival of Aristotle’s rainbow-
analysis is a function of its overwhelming authority—by virtue of which it
buried all competition—or whether that survival is a mere historical accident
is impossible to determine with certainty. We do have suggestions of other
accounts in antiquity, including one by Ptolemy.! Given the fragmentary and
questionable nature of these suggestions, though, our discussion of the rain-
bow in the first part of this section will necessarily focus on Aristotle.
Whereas it is not clear why the study of rainbows was considered periph-
eral by ancient optical theorists (after all, the rainbow represents a visual effect
par excellence), the study of burning mirrors is another matter entirely. For
burning mirrors have nothing to do with image-formation or the deflection of
visual rays; they have the unique property of focusing light rays. In other
words, burning mirrors have nothing to do with sight and everything to do
with light. As we will see in the second part of this section, the earliest at-
tempt to understand the focusing property of burning mirrors—in Euclid’s
Catoptrics—was as crude as it was misguided. Within roughly a century, how-

ever, when Diocles produced his exquisite study of spherical and parabolic
burning mirrors, the analysis had achieved an extraordinary level of sophisti-
cation.

1. The Rainbow

Aristotle’s study of the rainbow comes in the third book of the Meteoro-
logy, where he discusses certain atmospheric phenomena, such as lunar and
solar halos, that are, by his account, due to reflection. However—and here we
come to an interesting interpretive problem—it is not the reflection of light
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but, rather, of visual flux (opsis) that creates such effects. What makes this
point problematic, of course, is that the theory of sight Aristotle develops with
such punctilio in On the Soul and Sense and Sensibilia (see Section I, pp. 25-
27 above) is unequivocally intromissionist. He is in fact at pains there to
refute the extramissionist alternative. Why this apparent contradiction? While

there is no definitive answer to this question, it seems likely that Aristotle
adopted the visual-flux model because it provided the standard framework for
geometrical optics at the time (note, also, the use of a visual-flux model to
explain shortsightedness in passage 1.7 above from the Problems, which, if not
Aristotle’s own work, is at least Aristotelian). Thus, Aristotle’s use of the vi-
sual-ray model in the Meteorology probably reflects a methodological rather

than a theoretical commitment. That said, let us turn to the following passage

from Meteorology, 111, 4, 373a35-373b25 (pp. 601-602):

[5.1] Sight is reflected from all smooth surfaces, such as are air and water
among others. . . . But things are best reflected from water, and even in the
process of formation it is a better mirror than air; for each of the particles,
the union of which constitutes a raindrop, is necessarily a better mirror than
mist. Now it is obvious and has already been stated [in III, 2, 372a29-
372b6] that a mirror of this kind renders the colour of an object only, but
not its shape. Hence it follows that when it is on the point of raining and
the air in the clouds is in the process of forming into raindrops . . . if the sun
is opposite, or any other object bright enough to make the cloud a mirror
and cause the sight to be reflected to the object, then the reflection must
render the colour of the object without its shape.

From this passage it is clear that Aristotle has in mind three basic prerequisites
for the formation of a rainbow: a raincloud aborning through the coalescence
of water-particles into droplets; a bright object (such as the sun or moon)
directly opposite the cloud, and a viewer facing the cloud so that his sight can
reflect to the bright object—in other words, so that the object is to his back.
With these points in mind, Aristotle goes on in Meteorology, 111, 4, 374b9-
375a8 (p. 603) to explain the color-bands that can be distinguished within
the rainbow.

[5.2] We must recognize . . . that white colour on a black surface . . . gives
red; second, that sight when strained to a distance becomes weaker and less;
third, that black is a sort the negation of sight: an object appears black
because sight fails; so everything at a distance looks blacker, because sight
does not reach it . . . . Clearly, then, when sight is reflected it is weakened
and, as it makes dark look darker, so it makes white look less white, chang-
ing it and bringing it nearer to black. When the sight is relatively strong the
change is to red; the next stage is green, and a further degree of weakness
gives violet. . . . Hence also the rainbow appears with three colours [so that]
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the outer band of the primary rainbow is red; for the largest band reflects
most sight to the sun, and the outer band is largest. The middle band and
the third go on the same principle. . . . The appearance of yellow [between
the outer red and middle green bands] is due to contrast; for the red is whit-
ened by its juxtaposition with green.

How, then, do we apply this analysis of color-perception to the model of re-

flection from individual droplets described in passage 5.1 above? For that we
turn to Meteorology, 111, 5, 375b16-376b21, where Aristotle describes a semi-
circle with its base GP on the horizon, its center K at the center of sight, and
the sun rising at point G. Accordingly, as Aristotle describes it in Mezeorology,

I11, 5, 375b30-376b15 (pp. 604-605):

[5.3] First, let the luminous body be rising at the point G [in figure 5.1],
and let KM be reflected to G, and let the plane determined by the triangle
GKM be produced. Then the section of the sphere will be a great circle.
[Now] since both the points G and K and the line KG are given, the line
MG will be given too; consequently, the ratio of the line MG to the line MK
will be given too. . . . If, then, the semicircle. . . be revolved about the diam-
eter GKP, the lines reflected from the points G, K at the point M will have

the same ratio, and will make the angle KMG equal in every planc.2

X

K
figure 5.1

Two things are worth noting about this explanation. First, the reflection that
Aristotle describes is not bound by the law of equal angles, for ray KM, being
a radius of the circle, strikes it orthogonally. Hence, the angle of incidence,
KMY, is a right angle, which means that the angle of reflection GMX will be
less than a right angle by the amount represented by angle KMG. Second, the
position of point M on the semicircle, which defines the position of the rain-
bow, is unique, its location being a function of a particular ratio between GM
and MK. The precise measure of that ratio is determined by finding two
points, D and B, on diameter GP [in figure 5.2] such that GD : DK = GB :
BK = GM : MK. Accordingly, M will lie at the intersection of semicircle
GMP and the semicircle erected on segment DB of line GB (the so-called
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figure 5.2

Apollonian semicircle).> The position of M, which defines the rainbow’s arc,
is therefore invariable with respect to G and K. So the curvature of the arc—
which is a function of the size of the circle generated by rotating triangle
GMK about axis GKP—is constant. The size of the arc can vary, however,
depending on the position of G with respect to the horizon. Hence, as G rises
above the horizon [in figure 5.3], diameter GKP of the semicircle tilts about
K as a fulcrum, that tilt in turn pulling point M lower toward the horizon line
until, at last, G rises high enough to make M disappear below the horizon-
line.

horizon line

figure 5.3

The arc formed by the rotation of point M about axis GKP is a mere line,
whereas the rainbow itself consists of several bands of color. The arc described
by M therefore represents a mean about which those bands are grouped. In
other words, the reflection involved in the rainbow’s formation occurs within
a range whose midpoint is defined by this arc. Now, as Aristotle claims in
passage 5.2 above, the rainbow consists of three basic bands starting with red
at the top and passing through green in the middle to violet at the bottom. If,
then, the arc formed by M is taken to define the green band in the middle, the
formation of the other two bands can be explained on the basis of the relative
lengths of their generating ray-couples. For instance, the ray-couple forming
the violet band below M is longer than ray-couple KMG, so the resulting
visual impression along this ray-couple will be weaker.# By the same token,
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the ray-couple forming the red band above M is shorter than ray-couple KMG,
so the resulting visual impression will be stronger. And, finally, as Aristotle
asserts in passage 5.2 above, “the appearance of yellow [between the outer red
and middle green bands] is due to contrast; for the red is whitened by its
juxtaposition with green.”

Despite its meretricious exactitude and its superficial coherence, Aristotle’s
explanation of the rainbow raises at least as many problems as it resolves. For
one thing, the “law” of reflection underlying that explanation (i.e., the law
defined by the specific ratio of GM to MK) flouts the law of-equal angles.
Why should reflection from small mirrors, as represented by individual rain-
drops, be any different from reflection from large mirrors?> Moreover, that
“law” is no law at all insofar as it is breached by the formation of the red and
violet bands on either side of the arc defined by M. Another problem has to
do with the formation of the secondary rainbow above the primary one. Two
issues stand out in this case. First, there is a dark space between the upper
band of the primary bow and the lower band of its secondary companion.
According to Aristotle’s account of weakening by distance, however, that space
should appear even lighter than the red band below it, since the distance com-
prehended by the ray-couple is even shorter. Second, the order of colors in
the secondary bow is opposite that in the primary one—i.e., it runs from red
at the bottom to violet at the top. Again, according to Aristotle’s account of
weakening by distance, this should not happen, since the ray-couple yielding
the impression of red, which is strongest, is longer than the ray-couple yield-
ing the impression of green, which is weaker; and that ray-couple is in turn
longer than the one yielding the impression of violet, which is weakest. Thus,
the reversal of colors in the secondary bow is matched by a reversal of the
weakening-principle described by Aristotle in passage 5.2 above.

2. Burning Mirrors

As we have already seen with Hero’s Catoptrics, and as we shall see in our
selections below, there was a certain fascination during antiquity with mirrors
and the effects that could be created with them. As far as burning mirrors go,
we have the well-known testimony of Apuleius about Archimedes’ destruc-
tion of the Roman fleet at Syracuse using such mirrors. That testimony is
quite late, however, and there is no contemporary mention of this astonishing
event, an event that would surely have occupied the attention of the chroni-
clers of the day. Moreover, the technical difficulties of carrying out such a feat

would have been insurmountable. As far as we know, the earliest surviving

analysis of burning mirrors is to be found in the Euclidean Cazoptrics, propo-
sition 30 (pp. 340-42), which is reproduced below:
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[5.4] [PROPOSITION 30] Fire is ignited by [spherical] concave mirrors that
are turned to face the sun.

Let ABC [in figure 5.4] be a [spherical] concave mirror, EZ the sun, and
T the mirror’s center of curvature. From some B
point D let DT be drawn to centerpoint T A
and extended to B. Let ray DC also fall and
be reflected to K. It will therefore reflect [to a
point] above centerpoint T, for angle P formed
at the [mirror’s] surface is smaller than the re-
maining angle—i.e., BCD—formed at the
[mirror’s] surface. Let arc AB = arc BC, and
from D let another ray, DA fall. It is therefore
obvious that ray AD reflects to K, since arc
AB = arc BC. In the same way we can dem- = 7

onstrate that all rays falling from D to the e
mirror and cutting off equal arcs intersect igure 5.4

straight line BT at the same point [which lies] above T.

Again, let ABC [in figure 5.5] be a [spherical] concave mirror and EZ the
sun, and let ETB be drawn from some point E through center of curvature
T. Let straight lines DTC and ZTA be drawn
from other points [such as] D and Z. Accord-
ingly, we have demonstrated earlier that rays
emitted from E reflect back along themselves,

ALBNG

because the angles formed at B are equal, in-
sofar as they are formed by the diameter. More-
over, [the same holds for] rays emitted from
Z, since the angles formed at A are equal, and
[likewise for] rays emitted from D along DC,
since the angles formed at C are equal. That
all rays reflect back upon themselves is clear,
for when they are extended through the
centerpoint, they form semicircles, and the figure 5.5
angles formed with semicircles are equal.

Therefore, the reflections are made at equal angles, so [the rays] are reflected
back upon themselves. Hence, all the rays emitted from every point will
coincide with rays falling on the centerpoint. Heat is therefore concentrated
at the center by these warming rays, so that tow will be ignited if it is placed
at this point.

There is some dispute over whether this theorem is genuinely Euclidean or
whether it represents a later, perhaps much later, and extremely maladroit
interpolation. There is no gainsaying its superficiality. Moreover, it is inco-
herent, the first part establishing correctly that the center of curvature in a
spherical mirror does not represent a focus for incident rays and the second
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part contravening that very point. A far more sophisticated analysis of spheri-
cal burning mirrors is to be found in Diocles’ On Burning Mirrors, which

probably dates to the very late third century B.C. The following passage is

from propositions 2 and 3, pp. 54-62, of that treatise:
[5.5] [PROPOSITION 2] Let AGM [in figure 5.6] be [a segment of] the

circumference of a circle whose center is B, and let the circumference be met
by some line AB. Let there be drawn from any two points on it (the circum-
ference) two lines parallel to AB, namely LF and GS. Join BL and BG, and
cut off arcs LM and GZ equal to arc LG. Then angle BLM = angle BLG.
And if we make angle ZGX = angle LGS and angle GLE = angle FLM, then
angle ELB = BLF, remainders (of angle BLG - angle GLE and angle BLM -
angle FLM). But angle FLB = angle LBE, [its] alternate, so angle LBE =

T
e i
E
P \R

figure 5.6

angle ELB, so BE = LE. But LE > EA, because EA is the shortest of (all) the
lines drawn from E to the circumference of the circle. So BE > EA, and also
BE > EG, since LE > EG. So angle O + angle R > angle D; and the angle
alternate to angle D is angle P, so angle O + angle R > angle P. But the whole
of angle C + angle P = angle R + angle O + angle Q. So angle C > angle Q.
But angle Q + angle O = angle C, so angle R = angle P, remainders (of [angle
R + angle O + angle Q] - [angle O + angle Q] and [angle C + angle P] - angle
C). And angle P = angle D, so angle R = angle D, so BX > XA.

Then let AB be bisected at H. Hence it has been demonstrated that if we
draw any number of parallel lines to AGM, the circumference of the circle,
and they are reflected from circumference AGM so as to produce equal angles,
then (the reflected lines) pass between points A and H, and no line among
them passes between points B and H. The nearer one of the lines parallel to
AB is to AB, the nearer to point H does its reflection (pass), and the farther
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one of them is (from AB), the nearer to point A does its reflection (pass).

[PROPOSITION 3] Ler FAD [in figure 5.7] be [a segment of] the
circumference of a circle in the established plane, and let its center be B. Let
its radius be BA, and let BA be bisected at H. Let DF cut AB perpendicu-
larly at H. Then each of the arcs DA and
AF is a sixth of the circumference. Let us
bisect arc DA at G and arc AF at N, and
draw TG parallel to AB, and join GB.
Then when TG is reflected from point G

~D

so as to make equal angles with arc DAF,
it falls between points A and H, as we
showed above. Let it fall on point X, and
let XG make with GK an angle O, equal
to angle S. Then it turns out that angle S

= 1/3 of a right angle; therefore angle O =
1/3 of a right angle. And angle S = angle

O, and angle R = angle H, right angles,’
so angle Q =angle Z.° So triangle BHZ
is similar to triangle GKX. And GK = BH,
because HA = KG = HB,” so GX = BZ. e
But GX = BX, because angle S = angle E,

so BZ = BX. Butangle S = 1/3 of a right figure 5.7

angle, and angle H is a right angle, so angle
Z =2/3 of aright angle. So BZ? = 4/3 BH2, so BX? = 4/3 BH? also.8 So BH
> 6 HX,? and AH = BH, so AH > 6 XH, and therefore AX > 5 XH.

And when the lines parallel to AB which meet arcs GD and NF are re-
flected at equal angles, they cut AH between points A and X; as for the
section (of AH) beyond X towards H, none of the (above) rays are reflected
to it. The rays parallel to AB which meet arc GAN, when reflected at equal
angles, cut XH. The two rays which are reflected from points G and N also
cut XH, at X. The nearer one of the other rays (among those reflected from
arc GAN) is to A, the nearer its reflection is to H.

So if AB is kept stationary, and arc AD is rotated until it returns to its
original position, the resulting figure will be a spherical surface. If the latter
is shaped in brass and placed facing the sun so that one of the sun’s rays
passes along AB, then the rays reflected from the surface formed by the
rotation of arc GD, when they are reflected at equal angles, will (all) go to
line AX, while the rays reflected from the whole surface formed by (the
rotation of) arc AG will (all) go to line HX, and the rays coming from the
largest circle in that surface, which passes through points G and N, will fall
on point X. The rays which are in the vicinity of point A will, after reflec-
tion, fall closer to point H. Thus great heat will result in the space between
points H and X, and it will be nearer to point H than to point X. Hence,
there is no advantage in the surface resulting from arc GD, since no ray from
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it falls on the area in which the burning takes place. Therefore whoever
wants to make a burning-mirror from a section of a sphere need use only the

surface produced by arc GA.

Diocles has thus demonstrated two important points about the use of
spherical concave mirrors as burning mirrors, both points being somewhat
unexpected. The first point is that, although there is no focal point for the
reflected rays in the case of spherical concave mirrors, there is a fairly concen-
trated focal area for them. The second—and more surprising point—is that
the burning capacity of such mirrors is not a function of the overall surface-
area exposed to the sun: that is, bringing more of the sphere’s surface into play
does not increase the concentration of rays. The effective surface is therefore
extremely limited.

It has long been supposed that, by the time Diocles wrote his treatise, it
had been established that the proper shape for a true burning mirror is para-
bolic. Although there is no textual evidence to support the claim, it is gener-
ally assumed that Archimedes (d. 212 B.C. ) was aware of that fact and, more-
over, that his younger contemporary, Apollonius of Perga, was too. After all,
Apollonius wrote the definitive treatise on conic sections. However, it is note-
worthy that, although Apollonius established the focal properties of both the
ellipse and the hyperbola, he had nothing to say on that score for the parabola.
Whatever the case, the first known discussion of parabolic mirrors occurs in
Diocles’ On Burning Mirrors, of which proposition 1, pp. 44-48, is given in
the following passage:

[5.6] [PROPOSITION 1] We believe that it is possible to make a burning

instrument of glass such that it has a spe-

cial property, namely that one can make K

lamps from it which produce fire in
temples and at sacrifices and immolations,
so that the fire is clearly seen to burn the =

sacrificial victims; this occurs, as we are
informed, in certain remote cities, espe-
cially on the days of great celebrations: this /
causes the people of those cities to mar- 7
vel.19 That is something which we too
shall do.

Let there be a parabola KBM [in fig-
ure 5.8] with axis AZ, and let half the pa-
rameter of the squares on the ordinates be
line BH.!! Let BE on the axis be equal to
BH, and let BE be bisected at point D.
Let us draw a line tangent to the section
at an arbitrary point, namely line QA, and
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draw line QG as ordinate to AZ. Then we know that AB = BG!2 and that
the line drawn from Q perpendicular to QA meets AZ beyond E.13 So let
us draw ZQ perpendicular to QA, and join QD. Then GZ = BH, and BH
= BE, so GZ = BE. We subtract GE, common (to GZ and BE); then the
remainder GB = EZ. But GB = BA, so AB = EZ. And BD = DE, because
BE is bisected at D, so the sum AD = DZ. And because triangle AQZ is
right-angled and its base AZ is bisected at D, AD = DQ = DZ.14 So angle
O = angle X, and angle A = angle P + angle Q.15 So let a line parallel to AZ
pass through Q, namely line QS. Then angle O = angle R, which is alter-
nate to it, and angle O = angle X, so angle X = angle R also. And angle P +
angle Q + angle X = angle R + angle T, [both sums being equal respectively
to] right angles, so angle T = angle P + angle Q, remainders. So when line
SQ meets line AQ it is reflected to point D, forming equal angles P + Q
and T between itself and the tangent AQ. Hence, it has been shown that if
one draws from any point on KBM a line tangent to the section and draws
the line connecting the point of tangency with point D, e.g., line QD, and
draws line SQ parallel to AZ, then in that case line SQ is reflected to point
D, i.e., the line pasing through point Q is reflected at equal angles from the
tangent to the section. And all parallel lines from all points on KBM have
the same property, so, since they make equal angles with the tangents, they
go to point D.

Hence, if AZ is kept stationary, and KBM revolved (about it) until it
returns to its original position, and a concave surface of brass is constructed
on the surface described by KBM, and placed facing the sun, so that the
sun’s rays meet the concave surface, they will be reflected to point D, since
they are parallel to each other. And the more the (reflecting) surface is in-
creased, the greater will be the number of rays reflected to point D.

With this elegant demonstration, Diocles has established not only that a para-
bolic mirror focuses all incoming radiation to a true point but, equally impor-
tant, that, unlike spherical mirrors, parabolic mirrors become increasingly ef-

fective as more of their surface-area is exposed to the light-source.
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NOTES

'In his commentary on Aristotle’s Meteorology, Olympiodorus (late sixth century,
A.D.) imputes to Prolemy the opinion that the rainbow consists of seven colors.
Unfortunately, we have no textual evidence whatever to support this claim.

2In other words, if we rotate the semicircle about axis GKP, point M will describe
a semicircle, that semicircle representing the basic arc of the rainbow.

3For this explanation of how point M is located on the semicircle I depend heavily
upon Carl B. Boyer, The Rainbow: From Myth to Mathematics (New York: Yoseloff,
1959). I am equally dependent upon him for the account of the formation of the
rainbow’s color-bands below.

4The closer to P the point of reflection approaches, the longer the resulting dis-

tance to G. Hence, while the length of the incident ray from K remains constant, the
length of the reflected ray increases, so that the overall distance traveled between K
and G increases.

*Since angle S = 30°, angle O = 30° by virtue of their equality. Angle S is also
equal to the angle at G, because they are alternate angles between the two parallels TG
and AB. Thus, the remaining angle E = 30°. Accordingly, angle O + angle E + angle
TGB = a right angle, and thus so must angle R.

6That is, both are 60°,

’Since segment GN = 1/6 of the entire circumference of the circle, the chord of
that segment, GN, is equal to the radius of the circle (by Euclid, Elements 111, 15).
Therefore, GK = 1/2 the circle’s radius, and so does HA (by construction).

8Since BHZ is a 30°/60°/90° triangle, BZ = 2ZH. Thus BZ? = 4HZ?. Thus, too,
since BZ? = BH? + HZ? BH? = BZ? - HZ? = 3HZ2. Thus, since HZ? = 1/3BH?, BZ2
= BH? + 1/3BH? = 4/3BH?. Finally, since BZ = BX, then it follows that BX? = 4/
3BH2.

Since BX? = 4/3BH?, then 4BX? = 3BH2, so it follows that 2BX = 3 BH. Since
3 = 1.73+, then half that quantity = .86+. Accordingly, BX = 3/2 BH = .86BH.
Therefore, the difference between the two, HX, equals the remainder, i.c., .14. .86/
.14 = 6.14. Thus, BH is a bit more than six times as large as BX.

1%Note that the “practical” raison d étre for this effect—to arouse wonder and awe
among religious celebrants—seems to be essentially the same as for the mirror-effect
described by Hero of Alexandria in passage 3.35 above.

1BH actually represents the distance from the vertex of the parabolic section to
the vertex of its generating cone; since the parameter is twice that distance, then BH
represents half the parameter.

12This equality stems from the fact that when the tangent from the ordinate cuts
the parabola’s axis, the section between that point of intersection and the parabola’s
vertex is equal to the section between the parabola’s vertex and the point where the
ordinate intersects the axis.
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Bltisa property of segment ZG formed by the intersections of the perpendicular
from the tangent and the ordinate on the axis that it be equal to half the parameter,

which is equal to BE (by construction). Thus, intersection-point Z must lie below
point B, since intersection-point G lies below point B.
1Since triangle AQZ is right, then it can be inscribed into a circle with ZA as
diameter and D as center. Hence, AD, DQ, and DZ, being radii, are all equal.
5This follows from the fact that triangles DQZ and AQD are isoceles.




CONCLUSION

The immediate course of mathematical optics after Prolemy is difficult to
trace with any accuracy because of a lack of textual evidence. All indications
are, however, that the science of optics suffered considerable decline during
late antiquity. There is fairly clear evidence, for instance, that, while Euclid’s
optical work was still in effective circulation (as witness Theon of Alexandria’s
fourth-century commentary on Euclid’s Optics), Prolemy’s optical masterpiece
seems to have sunk into near-immediate oblivion. True, an absence of texts is
not proof of an absence of scholarly interest or activity; but, given the scant
textual evidence available—including Anthemius of Tralles’ rather maladroit
sixth-century study of the focusing-property of parabolic mirrors—we must
conclude that the period between roughly 200 and 850 A.D. was one of stag-
nation, if not outright regression.

The situation changed dramatically with the Arabs. No doubt because of
the translation-program sponsored by al-Ma‘mun (fl. c. 820), various Greek
optical texts came under serious scrutiny during the first half of the ninth
century. Out of that scrutiny came one of the earliest optical treatises to be
composed in Arabic, the De aspectibus of Ya‘qub al-Kindi (d. c. 870). While
deeply rooted in the Euclidean optical tradition, this treatise nonetheless shows
signs of genuine creativity, particularly in the analysis of radiation from point-
sources. The model that al-Kindi constructs

in proposition 14 is as follows: let circular E

segment ABD with centerpoint C [in fig-
ure 6.1] represent the surface of the cornea,
and let points A, B, and D represents point-
sources of visual radiation. Each point will
therefore create a hemisphere of radiation,
A’s being represented by arc EF, B’s by arc
GH, and D’s by arc KL. All of these hemi-
spherical segements overlap toward point X,
where radial line BC intersects arc EL of

overall radiation. Thus, the more points
between A and D that are taken into ac-
count, the more concentrated the area of overlap toward point X. “There-
fore,” al-Kindi concludes, “it has been demonstrated that the center [of the

figure 6.1
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hemisphere of radiation at point X] is intensely illuminated.. And what lies
closer to that point is more intensely illuminated than what lies farther from
it. For more light falls upon that point—i.e., it is illuminated by more point-
sources of light.”

Within a century of al-Kindi’s death (c. 870), mathematical optics had
reached such a high analytic level that the mathematician Ibn Sahl (fl. c. 980)
was able not only to derive the sine-law of refraction but to use it in demon-

strating the focal properties of hyperbolic lenses. In this he anticipated Kepler
(d. 1630) and Descartes (d. 1650) by some six-and-a-half centuries. But far

more historically significant than Ibn Sahl was his younger contemporary, Ibn

al-Haytham (Latinized as “Alhacen”), author of a monumental optical synthe-
sis entitled Kitab al-Manazir (“Book of Optics”). Closely modeled after
Prolemy’s Optics, this work brought together several analytic strands, includ-
ing Galenic ocular anatomy and physiology, Euclidean-Ptolemaic ray-analy-
sis, experimentalism, and Aristotelian physics. The result is a true integration
that represents more than the sum total of its separate parts.

In a real sense, then, Alhacen’s Kitab al-Manazir marks the culmination of
the Greek—particularly the Ptolemaic—optical tradition. Yet in an equally
real sense it marks the beginning of a new and fundamentally antithetical
optical tradition. For, whereas Alhacen’s predecessors seem to have been unani-
mous (or at least virtually so) in supporting the Euclidean-Ptolemaic model of
visual radiation, Alhacen was adamant in rejecting it. Instead, he proposed an
intromissionist alternative based on the radiation of light and color from ex-
ternal objects into the eye. Unlike Euclid and Prolemy, moreover, Alhacen
made light a direct agent in vision. No longer a mere prerequisite for visibil-
ity, light was now visible in its own right. As such, it was functionally inde-
pendent of the visual process and, therefore, a subject for physical analysis in
its own right.

figure 6.2

By rendering light per se visible, Alhacen pointed the way toward the
development of modern physical optics, yet, despite such intimations of mo-
dernity, Alhacen’s work was still firmly entrenched in the classical tradition of
ray-analysis with its emphasis on sight rather than light. A look at his basic
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theory of visual perception will make this point clear. According to Alhacen,
every point on a luminous or illuminated object radiates its form in all pos-
sible directions, thus creating a hemisphere of radiation (note the similarity to
al-Kindi’s model of punctiform radiation).
Each such hemisphere can be resolved into in-
numerable individual rays [as represented in
figure 6.2]. Accordingly, every point on the
luminous or illuminated object is radially con-
nected to every point facing it on the surface
of the eye [see figure 6.3].
As a receptor of such point-forms, the eye figure 6.3

has a peculiar structure adapted its visual func-

tion. The ocular globe itself [as represented in figure 6.4] is contained within
an outer sheath that consists of the sclera and its corneal extension at the
front. Its centerpoint is at D. Inside this globe is a smaller globe called the
uvea, whose centerpoint C lies in front of D. The opening at the front of the
uveal sphere forms the pupil. Next in line comes the crystalline lens. Its
anterior surface is a segment ofa sphcrc with its center of curvature at D, and
its posterior surface is a segment of a more gently curved sphere. Finally, at
the rear of the uveal sphere is an opening for the hollow optic nerve that
originates at the front of the brain. This nerve conveys visual spirit from the

sclera

-

figure 6.4

brain all the way to the anterior surface of the crystalline lens, which is thereby
rendered visually sensitive. All of the spaces within the eye are filled with
optic humors of different refractivity. The region between the cornea and the
anterior surface of the crystalline lens is replete with albugineous humor, which
is more refractive than air. The crystalline lens, in turn, is filled with glacial
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humor, which is more refractive than the albugineous humor in front of it.
And the rest of the uveal sphere behind the lens is filled with vitreous humor,
which is even more refractive than the glacial humor in front of it.

So constituted, the eye--and, more specifically, the crystalline lens--re-
ceives the point-forms of light and illuminated color that are radiated from all
the point-sources on facing visible objects. The ensuing impression should
therefore be as chaotic as possible. We should not, in short, see defined im-
ages. That we do, Alhacen concludes, is because of the peculiar visual sensitiv-
ity of the crystalline lens that lets it accept, or “feel,” only those forms that
strike it orthogonally. The rest it ignores because of their relative weakness, so
what is effectively impressed on the lens is a point-by-point representation of
the original visible surface. The lens’s refractive disposition also comes into

figure 6.5

play by allowing those rays that strike it orthogonally to pass through
unrefracted while deflecting the rest out of consideration [see figure 6.5]. What
results is a cone of effective radiation whose base is formed by the visible sur-
face and whose vertex lies at D, the center of the ocular globe. Before actually

figure 6.6
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intersecting at D, however, the rays-cum-image are refracted at the posterior
surface of the lens so as to be funneled in proper, upright order along the

visual axis into the hollow optic nerve whence it eventually passes into the

brain for perceptual judgment [see figure 6.6].

From this account it should be clear that Prolemy’s cone of visual radia-
tion and Ibn al-Haytham’s cone of visible radiation are perfectly congruent;
that is, every Euclidean-Ptolemaic visual ray extending outward from the cen-
ter of sight to the visible object has an Alhacenian counterpart extending in-
ward from the visible object to the center of sight. As far as ray-analysis is
concerned, then, the two accounts are mathematically equivalent because they
share the same analytic perspective—from the center of sight outward. This is
not, however, to deny that Alhacen made signficant advances over Prolemy.
At the level of anatomy and physiology, for instance, Alhacen’s account is far
more comprehensive and profound than Ptolemy’s, and the same holds at the
level of perceptual psychology. At the level of mathematics, moreover, Alhacen’s
analysis of specific optical problems, particularly in reflection and refraction,
represents a quantum leap in sophistication over Prolemy'’s.

Small wonder, then, that Alhacen’s optical synthesis gained canonical sta-
tus within Scholastic circles so soon after being translated into Latin (c. 1200).
Indeed, the logical force of his account was such that, within only a few de-
cades of its first appearance in Latin form, it had spawned a handful of crucial
derivative works, including Roger Bacon’s De multiplicatione specierum (c. 1260)
and Perspectiva (c. 1265), Witelo’s Perspectiva (c. 1275), and John Pecham’s
Perspectiva communis (c. 1280). Along with the Latin version of Alhacen’s
own treatise, under the title De aspectibus, these works formed the core of the
so-called Perspectivist tradition, which flourished until the early seventeenth
century. Within this tradition the science of optics achieved a remarkably
high technical level during the Middle Ages and Renaissance.

C
B
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A salient example is Theodoric of Freiburg’s early-fourteenth-century reso-
lution of the rainbow-problem according to a combination of refractions and
reflections within each raindrop. Let sphere BCD [in figure 6.7] represent a
raindrop, and let AB represent a solar ray. Let AB strike the raindrop at such
an angle that it passes through rather than reflecting from interface BD. Ac-
cordingly, when AB enters the optically denser raindrop, it will be refracted
toward the normal along path BC . If, in turn, the angle of incidence at point
C is adequate to cause reflection, the ray will be diverted to point D, where it
will re-enter the air to be refracted away from the normal along DE. On
reaching the eye, DE will therefore yield a specific color-impression that de-
pends ultimately upon the original angle of incidence at the raindrop’s sur-
face. As we now know, in fact, the color we see along DE is due to the pris-
matic effect created by the raindrop, and that effect is, as Theodoric surmised,
a function of the original angle of incidence at the raindrop’s surface. Theodoric
was therefore essentially correct in his analysis of the rainbow, at least at the
descriptive level. And he was not alone. Working independently at almost
precisely the same time as Theodoric, an Arab disciple of Alhacen, Kamal al-
Din, arrived at virtually the same explanation of the rainbow.

Despite the weight of authority that it accrued between roughly 1260 and
1600, the Perspectivist account of vision did not so overwhelm its Euclidean-
Prolemaic forebear as to render it moot. On the contrary, several Scholastic
thinkers, Roger Bacon foremost among them, viewed the two accounts as
complementary rather than contradictory, and some later thinkers, such as
the sixteenth-century optical writer, Francesco Maurolyco, felt free to shift
between intromissionist and extramissionist frameworks when it suited their
analytic purposes (cf. the discussion of Aristotle on p.151 above). Indeed, the
relatively rich Latin textual traditions of Euclid’s Optics (34 manuscript cop-
ies) and Catoptrics (52 manuscript copies), as well as of Ptolemy’s Optics (13
manuscript copies), bespeak a continuing and lively interest in those works
right up to the end of the sixteenth century. And why not? Since both the
Perspectivist and Euclidean-Prolemaic accounts share the same analytic frame-

work—in terms of a cone of radiation with its vertex at the center of sight—

then, as far as ray-analysis is concerned, Perspectivist optics can be viewed as a
mere elaboration on, not a refutation of, its Euclidean-Ptolemaic counterpart.

Thus linked through analytic focus, both the Prolemaic and Perspectivist
accounts shared the same fate in the early seventeenth century when Kepler
subjected the latter to a devastating critique in his Ad Vitellionem paralipomena
(“Emendations to Witelo”) of 1604. The focus of his critique was the cone of
radiation. Why, Kepler mused, should the rays that form the visual image be
limited to those striking the lens orthogonally? Why, in other words, should
the crystalline lens be exempt from the laws that govern all other transparent
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bodies of equivalent kind—for example, glass flasks filled with water? Kepler’s
answer was that it should not. On thart basis he transformed the lens from a
sensitive form-selector to a mere focusing-device. Accordingly, as figure 6.8

P

figure 6.8

illustrates, the lens is understood to accept @// of the rays reaching it from any
given point-source P, bringing them to focus in a point-image P, whose loca-
tion is determined by the lens’s curvature and refractivity. The more point-
sources that are taken into account, the more point images are projected, un-
til, finally, an inverted point-by-point representation of the original object is

figure 6.9

formed behind the lens [as in figure 6.9]. By Kepler’s reasoning, then, the eye
is nothing more than a camera within which the images of external objects are
cast by the lens upon the retinal screen at the back.

By “objectifying” the account of sight in this way, Kepler did away in one

fell swoop with the central analytic conventions of both the Euclidean-Ptole-

maic and the Perspectivist accounts of vision. First and foremost, the eye or
crystalline lens was no longer viewed as a sensitive agent in the visual process;
it was reduced to absolute passivity. Second, the cone of radiation was now
functionally irrelevant because all of the rays reaching the eye from a given
object, not just the orthogonals, go into the formation of visual images. This
meant, finally, that the center of sight no longer served any analytic purpose,
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because it no longer represented the intersection-point—either actually or
potentially—for the visible radiation transmitted by the lens. Thus bereft of
its traditional analytic viewpoint, optics was at last ready to make the transi-

tion from science of sight to science of light, a transition that was completed

by the end of the seventeenth century.
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